These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
361 related articles for article (PubMed ID: 19094206)
1. Prediction of regulatory elements in mammalian genomes using chromatin signatures. Won KJ; Chepelev I; Ren B; Wang W BMC Bioinformatics; 2008 Dec; 9():547. PubMed ID: 19094206 [TBL] [Abstract][Full Text] [Related]
2. An integrated approach to identifying cis-regulatory modules in the human genome. Won KJ; Agarwal S; Shen L; Shoemaker R; Ren B; Wang W PLoS One; 2009; 4(5):e5501. PubMed ID: 19434238 [TBL] [Abstract][Full Text] [Related]
3. hiHMM: Bayesian non-parametric joint inference of chromatin state maps. Sohn KA; Ho JW; Djordjevic D; Jeong HH; Park PJ; Kim JH Bioinformatics; 2015 Jul; 31(13):2066-74. PubMed ID: 25725496 [TBL] [Abstract][Full Text] [Related]
4. Predicting enhancers in mammalian genomes using supervised hidden Markov models. Zehnder T; Benner P; Vingron M BMC Bioinformatics; 2019 Mar; 20(1):157. PubMed ID: 30917778 [TBL] [Abstract][Full Text] [Related]
5. ChromaSig: a probabilistic approach to finding common chromatin signatures in the human genome. Hon G; Ren B; Wang W PLoS Comput Biol; 2008 Oct; 4(10):e1000201. PubMed ID: 18927605 [TBL] [Abstract][Full Text] [Related]
6. HebbPlot: an intelligent tool for learning and visualizing chromatin mark signatures. Girgis HZ; Velasco A; Reyes ZE BMC Bioinformatics; 2018 Sep; 19(1):310. PubMed ID: 30176808 [TBL] [Abstract][Full Text] [Related]
7. Integrating epigenomic data and 3D genomic structure with a new measure of chromatin assortativity. Pancaldi V; Carrillo-de-Santa-Pau E; Javierre BM; Juan D; Fraser P; Spivakov M; Valencia A; Rico D Genome Biol; 2016 Jul; 17(1):152. PubMed ID: 27391817 [TBL] [Abstract][Full Text] [Related]
8. Clustered ChIP-Seq-defined transcription factor binding sites and histone modifications map distinct classes of regulatory elements. Rye M; Sætrom P; Håndstad T; Drabløs F BMC Biol; 2011 Nov; 9():80. PubMed ID: 22115494 [TBL] [Abstract][Full Text] [Related]
9. RFECS: a random-forest based algorithm for enhancer identification from chromatin state. Rajagopal N; Xie W; Li Y; Wagner U; Wang W; Stamatoyannopoulos J; Ernst J; Kellis M; Ren B PLoS Comput Biol; 2013; 9(3):e1002968. PubMed ID: 23526891 [TBL] [Abstract][Full Text] [Related]
10. Enhancer prediction in the human genome by probabilistic modelling of the chromatin feature patterns. Osmala M; Lähdesmäki H BMC Bioinformatics; 2020 Jul; 21(1):317. PubMed ID: 32689977 [TBL] [Abstract][Full Text] [Related]
11. Opening up the blackbox: an interpretable deep neural network-based classifier for cell-type specific enhancer predictions. Kim SG; Theera-Ampornpunt N; Fang CH; Harwani M; Grama A; Chaterji S BMC Syst Biol; 2016 Aug; 10 Suppl 2(Suppl 2):54. PubMed ID: 27490187 [TBL] [Abstract][Full Text] [Related]
12. Active enhancer positions can be accurately predicted from chromatin marks and collective sequence motif data. Podsiadło A; Wrzesień M; Paja W; Rudnicki W; Wilczyński B BMC Syst Biol; 2013; 7 Suppl 6(Suppl 6):S16. PubMed ID: 24565409 [TBL] [Abstract][Full Text] [Related]
13. Distinct and predictive chromatin signatures of transcriptional promoters and enhancers in the human genome. Heintzman ND; Stuart RK; Hon G; Fu Y; Ching CW; Hawkins RD; Barrera LO; Van Calcar S; Qu C; Ching KA; Wang W; Weng Z; Green RD; Crawford GE; Ren B Nat Genet; 2007 Mar; 39(3):311-8. PubMed ID: 17277777 [TBL] [Abstract][Full Text] [Related]
14. Genome-Wide Profiling of Cis-regulatory Elements in Mammalian Skin. Johnson MR; Mallarino R Methods Mol Biol; 2024; 2805():127-135. PubMed ID: 39008178 [TBL] [Abstract][Full Text] [Related]
15. Integrating and mining the chromatin landscape of cell-type specificity using self-organizing maps. Mortazavi A; Pepke S; Jansen C; Marinov GK; Ernst J; Kellis M; Hardison RC; Myers RM; Wold BJ Genome Res; 2013 Dec; 23(12):2136-48. PubMed ID: 24170599 [TBL] [Abstract][Full Text] [Related]
16. Enhancer prediction with histone modification marks using a hybrid neural network model. Lim A; Lim S; Kim S Methods; 2019 Aug; 166():48-56. PubMed ID: 30905748 [TBL] [Abstract][Full Text] [Related]
17. DELTA: A Distal Enhancer Locating Tool Based on AdaBoost Algorithm and Shape Features of Chromatin Modifications. Lu Y; Qu W; Shan G; Zhang C PLoS One; 2015; 10(6):e0130622. PubMed ID: 26091399 [TBL] [Abstract][Full Text] [Related]
18. Genome-wide analysis of histone modifications can contribute to the identification of candidate cis-regulatory regions in the threespine stickleback fish. Okude G; Yamasaki YY; Toyoda A; Mori S; Kitano J BMC Genomics; 2024 Jul; 25(1):685. PubMed ID: 38992624 [TBL] [Abstract][Full Text] [Related]
19. IMPACT: Genomic Annotation of Cell-State-Specific Regulatory Elements Inferred from the Epigenome of Bound Transcription Factors. Amariuta T; Luo Y; Gazal S; Davenport EE; van de Geijn B; Ishigaki K; Westra HJ; Teslovich N; Okada Y; Yamamoto K; ; Price AL; Raychaudhuri S Am J Hum Genet; 2019 May; 104(5):879-895. PubMed ID: 31006511 [TBL] [Abstract][Full Text] [Related]
20. Combinatorial epigenetic patterns as quantitative predictors of chromatin biology. Cieślik M; Bekiranov S BMC Genomics; 2014 Jan; 15():76. PubMed ID: 24472558 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]