These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
361 related articles for article (PubMed ID: 19094206)
21. TAD boundary and strength prediction by integrating sequence and epigenetic profile information. Wang Y; Liu Y; Xu Q; Xu Y; Cao K; Deng N; Wang R; Zhang X; Zheng R; Li G; Fang Y Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33866359 [TBL] [Abstract][Full Text] [Related]
22. Genome-wide enhancer prediction from epigenetic signatures using genetic algorithm-optimized support vector machines. Fernández M; Miranda-Saavedra D Nucleic Acids Res; 2012 May; 40(10):e77. PubMed ID: 22328731 [TBL] [Abstract][Full Text] [Related]
23. Cell Type-Specific Chromatin Signatures Underline Regulatory DNA Elements in Human Induced Pluripotent Stem Cells and Somatic Cells. Zhao MT; Shao NY; Hu S; Ma N; Srinivasan R; Jahanbani F; Lee J; Zhang SL; Snyder MP; Wu JC Circ Res; 2017 Nov; 121(11):1237-1250. PubMed ID: 29030344 [TBL] [Abstract][Full Text] [Related]
24. Accurate Promoter and Enhancer Identification in 127 ENCODE and Roadmap Epigenomics Cell Types and Tissues by GenoSTAN. Zacher B; Michel M; Schwalb B; Cramer P; Tresch A; Gagneur J PLoS One; 2017; 12(1):e0169249. PubMed ID: 28056037 [TBL] [Abstract][Full Text] [Related]
25. Prediction-based approaches to characterize bidirectional promoters in the mammalian genome. Yang MQ; Elnitski LL BMC Genomics; 2008; 9 Suppl 1(Suppl 1):S2. PubMed ID: 18366609 [TBL] [Abstract][Full Text] [Related]
27. Chromatin proteomics reveals novel combinatorial histone modification signatures that mark distinct subpopulations of macrophage enhancers. Soldi M; Mari T; Nicosia L; Musiani D; Sigismondo G; Cuomo A; Pavesi G; Bonaldi T Nucleic Acids Res; 2017 Dec; 45(21):12195-12213. PubMed ID: 28981749 [TBL] [Abstract][Full Text] [Related]
28. A novel method to predict regulatory regions based on histone mark landscapes in macrophages. Nagy G; Dániel B; Jónás D; Nagy L; Barta E Immunobiology; 2013 Nov; 218(11):1416-27. PubMed ID: 23973299 [TBL] [Abstract][Full Text] [Related]
29. Ubiquitous heterogeneity and asymmetry of the chromatin environment at regulatory elements. Kundaje A; Kyriazopoulou-Panagiotopoulou S; Libbrecht M; Smith CL; Raha D; Winters EE; Johnson SM; Snyder M; Batzoglou S; Sidow A Genome Res; 2012 Sep; 22(9):1735-47. PubMed ID: 22955985 [TBL] [Abstract][Full Text] [Related]
30. ChromClust: A semi-supervised chromatin clustering toolkit for mining histone modifications interplay. Noureen N; Touseef M; Fazal S; Qadir MA Genomics; 2015 Dec; 106(6):355-9. PubMed ID: 26551295 [TBL] [Abstract][Full Text] [Related]
32. Detection and characterization of regulatory elements using probabilistic conditional random field and hidden Markov models. Wang H; Zhou X Chin J Cancer; 2013 Apr; 32(4):186-94. PubMed ID: 23237214 [TBL] [Abstract][Full Text] [Related]
33. Characterizing chromatin interactions of regulatory elements and nucleosome positions, using Hi-C, Micro-C, and promoter capture Micro-C. Lee BH; Wu Z; Rhie SK Epigenetics Chromatin; 2022 Dec; 15(1):41. PubMed ID: 36544209 [TBL] [Abstract][Full Text] [Related]
34. A computational approach for the functional classification of the epigenome. Gandolfi F; Tramontano A Epigenetics Chromatin; 2017; 10():26. PubMed ID: 28515787 [TBL] [Abstract][Full Text] [Related]
35. Global Mapping of Open Chromatin Regulatory Elements by Formaldehyde-Assisted Isolation of Regulatory Elements Followed by Sequencing (FAIRE-seq). Bianco S; Rodrigue S; Murphy BD; Gévry N Methods Mol Biol; 2015; 1334():261-72. PubMed ID: 26404156 [TBL] [Abstract][Full Text] [Related]
36. Finding combinatorial histone code by semi-supervised biclustering. Teng L; Tan K BMC Genomics; 2012 Jul; 13():301. PubMed ID: 22759587 [TBL] [Abstract][Full Text] [Related]
37. Discover regulatory DNA elements using chromatin signatures and artificial neural network. Firpi HA; Ucar D; Tan K Bioinformatics; 2010 Jul; 26(13):1579-86. PubMed ID: 20453004 [TBL] [Abstract][Full Text] [Related]
38. Histone ChIP-Seq identifies differential enhancer usage during chondrogenesis as critical for defining cell-type specificity. Cheung K; Barter MJ; Falk J; Proctor CJ; Reynard LN; Young DA FASEB J; 2020 Apr; 34(4):5317-5331. PubMed ID: 32058623 [TBL] [Abstract][Full Text] [Related]
39. H3.3 turnover: a mechanism to poise chromatin for transcription, or a response to open chromatin? Huang C; Zhu B Bioessays; 2014 Jun; 36(6):579-84. PubMed ID: 24700556 [TBL] [Abstract][Full Text] [Related]
40. Epigenome overlap measure (EPOM) for comparing tissue/cell types based on chromatin states. Li WV; Razaee ZS; Li JJ BMC Genomics; 2016 Jan; 17 Suppl 1(Suppl 1):10. PubMed ID: 26817822 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]