BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 19095015)

  • 1. ClassRHO: a platform for classification of bacterial rieske non-heme iron ring-hydroxylating oxygenases.
    Baek S; Kweon O; Kim SJ; Baek DH; Chen JJ; Cerniglia CE
    J Microbiol Methods; 2009 Mar; 76(3):307-9. PubMed ID: 19095015
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A new classification system for bacterial Rieske non-heme iron aromatic ring-hydroxylating oxygenases.
    Kweon O; Kim SJ; Baek S; Chae JC; Adjei MD; Baek DH; Kim YC; Cerniglia CE
    BMC Biochem; 2008 Apr; 9():11. PubMed ID: 18387195
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A profile of ring-hydroxylating oxygenases that degrade aromatic pollutants.
    Peng RH; Xiong AS; Xue Y; Fu XY; Gao F; Zhao W; Tian YS; Yao QH
    Rev Environ Contam Toxicol; 2010; 206():65-94. PubMed ID: 20652669
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ring-Hydroxylating Oxygenase database: a database of bacterial aromatic ring-hydroxylating oxygenases in the management of bioremediation and biocatalysis of aromatic compounds.
    Chakraborty J; Jana T; Saha S; Dutta TK
    Environ Microbiol Rep; 2014 Oct; 6(5):519-23. PubMed ID: 25646545
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rieske business: structure-function of Rieske non-heme oxygenases.
    Ferraro DJ; Gakhar L; Ramaswamy S
    Biochem Biophys Res Commun; 2005 Dec; 338(1):175-90. PubMed ID: 16168954
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A comprehensive phylogenetic analysis of Rieske and Rieske-type iron-sulfur proteins.
    Schmidt CL; Shaw L
    J Bioenerg Biomembr; 2001 Feb; 33(1):9-26. PubMed ID: 11460929
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An insight into the origin and functional evolution of bacterial aromatic ring-hydroxylating oxygenases.
    Chakraborty J; Ghosal D; Dutta A; Dutta TK
    J Biomol Struct Dyn; 2012; 30(4):419-36. PubMed ID: 22694139
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rieske non-heme iron-dependent oxygenases catalyse diverse reactions in natural product biosynthesis.
    Perry C; de Los Santos ELC; Alkhalaf LM; Challis GL
    Nat Prod Rep; 2018 Jul; 35(7):622-632. PubMed ID: 29651484
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure of an aromatic-ring-hydroxylating dioxygenase-naphthalene 1,2-dioxygenase.
    Kauppi B; Lee K; Carredano E; Parales RE; Gibson DT; Eklund H; Ramaswamy S
    Structure; 1998 May; 6(5):571-86. PubMed ID: 9634695
    [TBL] [Abstract][Full Text] [Related]  

  • 10. From lipid transport to oxygenation of aromatic compounds: evolution within the Bet v1-like superfamily.
    Chakraborty J; Dutta TK
    J Biomol Struct Dyn; 2011 Aug; 29(1):67-78. PubMed ID: 21696226
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A cluster exposed: structure of the Rieske ferredoxin from biphenyl dioxygenase and the redox properties of Rieske Fe-S proteins.
    Colbert CL; Couture MM; Eltis LD; Bolin JT
    Structure; 2000 Dec; 8(12):1267-78. PubMed ID: 11188691
    [TBL] [Abstract][Full Text] [Related]  

  • 12. New classification system for oxygenase components involved in ring-hydroxylating oxygenations.
    Nam JW; Nojiri H; Yoshida T; Habe H; Yamane H; Omori T
    Biosci Biotechnol Biochem; 2001 Feb; 65(2):254-63. PubMed ID: 11302156
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermophilic bacteria are potential sources of novel Rieske non-heme iron oxygenases.
    Chakraborty J; Suzuki-Minakuchi C; Okada K; Nojiri H
    AMB Express; 2017 Dec; 7(1):17. PubMed ID: 28050858
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Allosteric control of O2 reactivity in Rieske oxygenases.
    Lipscomb JD; Hoffman BM
    Structure; 2005 May; 13(5):684-5. PubMed ID: 15893657
    [No Abstract]   [Full Text] [Related]  

  • 15. Structure-function analysis of the bacterial aromatic ring-hydroxylating dioxygenases.
    Butler CS; Mason JR
    Adv Microb Physiol; 1997; 38():47-84. PubMed ID: 8922118
    [No Abstract]   [Full Text] [Related]  

  • 16. Structural investigations of the ferredoxin and terminal oxygenase components of the biphenyl 2,3-dioxygenase from Sphingobium yanoikuyae B1.
    Ferraro DJ; Brown EN; Yu CL; Parales RE; Gibson DT; Ramaswamy S
    BMC Struct Biol; 2007 Mar; 7():10. PubMed ID: 17349044
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A small family of LLS1-related non-heme oxygenases in plants with an origin amongst oxygenic photosynthesizers.
    Gray J; Wardzala E; Yang M; Reinbothe S; Haller S; Pauli F
    Plant Mol Biol; 2004 Jan; 54(1):39-54. PubMed ID: 15159633
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Functional and evolutionary relationships among diverse oxygenases.
    Harayama S; Kok M; Neidle EL
    Annu Rev Microbiol; 1992; 46():565-601. PubMed ID: 1444267
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Active site structure of Rieske-type proteins: electron nuclear double resonance studies of isotopically labeled phthalate dioxygenase from Pseudomonas cepacia and Rieske protein from Rhodobacter capsulatus and molecular modeling studies of a Rieske center.
    Gurbiel RJ; Doan PE; Gassner GT; Macke TJ; Case DA; Ohnishi T; Fee JA; Ballou DP; Hoffman BM
    Biochemistry; 1996 Jun; 35(24):7834-45. PubMed ID: 8672484
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Redox and functional analysis of the Rieske ferredoxin component of the toluene 4-monooxygenase.
    Elsen NL; Moe LA; McMartin LA; Fox BG
    Biochemistry; 2007 Jan; 46(4):976-86. PubMed ID: 17240981
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.