BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 19095021)

  • 21. Characterization of insulin protection properties of complexation hydrogels in gastric and intestinal enzyme fluids.
    Yamagata T; Morishita M; Kavimandan NJ; Nakamura K; Fukuoka Y; Takayama K; Peppas NA
    J Control Release; 2006 May; 112(3):343-9. PubMed ID: 16631271
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [Application of pH-responsive polymers to oral dosage forms for insulin].
    Morishita M; Takayama K
    Nihon Rinsho; 2001 Nov; 59(11):2255-60. PubMed ID: 11712416
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mucoadhesive hydrogel microparticles based on poly (methacrylic acid-vinyl pyrrolidone)-chitosan for oral drug delivery.
    Sajeesh S; Sharma CP
    Drug Deliv; 2011 May; 18(4):227-35. PubMed ID: 21067275
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Cellular evaluation of oral chemotherapy carriers.
    Blanchette J; Peppas NA
    J Biomed Mater Res A; 2005 Mar; 72(4):381-8. PubMed ID: 15666363
    [TBL] [Abstract][Full Text] [Related]  

  • 25. pH-Responsive poly(itaconic acid-co-N-vinylpyrrolidone) hydrogels with reduced ionic strength loading solutions offer improved oral delivery potential for high isoelectric point-exhibiting therapeutic proteins.
    Koetting MC; Peppas NA
    Int J Pharm; 2014 Aug; 471(1-2):83-91. PubMed ID: 24853463
    [TBL] [Abstract][Full Text] [Related]  

  • 26. PHEA-graft-polymethacrylate supramolecular aggregates for protein oral delivery.
    Licciardi M; Pasut G; Amato G; Scialabba C; Mero A; Montopoli M; Cavallaro G; Schiavon O; Giammona G
    Eur J Pharm Biopharm; 2013 May; 84(1):21-8. PubMed ID: 23275110
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Biodegradable hydrophilic carriers for the oral delivery of hematological factor IX for hemophilia B treatment.
    Horava SD; Moy KJ; Peppas NA
    Int J Pharm; 2016 Nov; 514(1):220-228. PubMed ID: 27863665
    [TBL] [Abstract][Full Text] [Related]  

  • 28. pH-responsive hydrogels with dispersed hydrophobic nanoparticles for the oral delivery of chemotherapeutics.
    Schoener CA; Hutson HN; Peppas NA
    J Biomed Mater Res A; 2013 Aug; 101(8):2229-36. PubMed ID: 23281185
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Development of smart delivery system for ascorbic acid using pH-responsive P(MAA-co-EGMA) hydrogel microparticles.
    Lee E; Kim K; Choi M; Lee Y; Park JW; Kim B
    Drug Deliv; 2010 Nov; 17(8):573-80. PubMed ID: 20626233
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Injectable and inherently vascularizing semi-interpenetrating polymer network for delivering cells to the subcutaneous space.
    Mahou R; Zhang DKY; Vlahos AE; Sefton MV
    Biomaterials; 2017 Jul; 131():27-35. PubMed ID: 28371625
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Antiproteolytic action of orally delivered insulin using pH-responsive hydrogels in a rat burn model.
    Madihally SV; Pantelogianis A; Toner M
    J Surg Res; 2006 Sep; 135(1):187-94. PubMed ID: 16616764
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Novel pH responsive polymethacrylic acid-chitosan-polyethylene glycol nanoparticles for oral peptide delivery.
    Sajeesh S; Sharma CP
    J Biomed Mater Res B Appl Biomater; 2006 Feb; 76(2):298-305. PubMed ID: 16130147
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The effect of complexation hydrogels on insulin transport in intestinal epithelial cell models.
    Wood KM; Stone GM; Peppas NA
    Acta Biomater; 2010 Jan; 6(1):48-56. PubMed ID: 19481619
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Surface-functionalized polymethacrylic acid based hydrogel microparticles for oral drug delivery.
    Sajeesh S; Bouchemal K; Sharma CP; Vauthier C
    Eur J Pharm Biopharm; 2010 Feb; 74(2):209-18. PubMed ID: 19737614
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A comparative study of the potential of solid triglyceride nanostructures coated with chitosan or poly(ethylene glycol) as carriers for oral calcitonin delivery.
    Garcia-Fuentes M; Prego C; Torres D; Alonso MJ
    Eur J Pharm Sci; 2005 May; 25(1):133-43. PubMed ID: 15854809
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Novel polyelectrolyte complexes based on poly(methacrylic acid)-bis(2-aminopropyl)poly(ethylene glycol) for oral protein delivery.
    Sajeesh S; Sharma CP
    J Biomater Sci Polym Ed; 2007; 18(9):1125-39. PubMed ID: 17931503
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Biodegradation and Toxicity of Protease/Redox/pH Stimuli-Responsive PEGlated PMAA Nanohydrogels for Targeting Drug delivery.
    Jin S; Wan J; Meng L; Huang X; Guo J; Liu L; Wang C
    ACS Appl Mater Interfaces; 2015 Sep; 7(35):19843-52. PubMed ID: 26288386
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Synthesis, characterization and in vivo efficacy of PEGylated insulin for oral delivery with complexation hydrogels.
    Tuesca AD; Reiff C; Joseph JI; Lowman AM
    Pharm Res; 2009 Mar; 26(3):727-39. PubMed ID: 19145407
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Oral absorption enhancement of salmon calcitonin by using both N-trimethyl chitosan chloride and oligoarginines-modified liposomes as the carriers.
    Huang A; Su Z; Li S; Sun M; Xiao Y; Ping Q; Deng Y
    Drug Deliv; 2014 Aug; 21(5):388-96. PubMed ID: 24188463
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Novel delivery system based on complexation hydrogels as delivery vehicles for insulin-transferrin conjugates.
    Kavimandan NJ; Losi E; Peppas NA
    Biomaterials; 2006 Jul; 27(20):3846-54. PubMed ID: 16529810
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.