These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
173 related articles for article (PubMed ID: 19095269)
1. Assessment of renal injury with a clinical dual head lithotriptor delivering 240 shock waves per minute. Handa RK; McAteer JA; Evan AP; Connors BA; Pishchalnikov YA; Gao S J Urol; 2009 Feb; 181(2):884-9. PubMed ID: 19095269 [TBL] [Abstract][Full Text] [Related]
2. Kidney damage and renal functional changes are minimized by waveform control that suppresses cavitation in shock wave lithotripsy. Evan AP; Willis LR; McAteer JA; Bailey MR; Connors BA; Shao Y; Lingeman JE; Williams JC; Fineberg NS; Crum LA J Urol; 2002 Oct; 168(4 Pt 1):1556-62. PubMed ID: 12352457 [TBL] [Abstract][Full Text] [Related]
3. Evaluation of shock wave lithotripsy injury in the pig using a narrow focal zone lithotriptor. Connors BA; McAteer JA; Evan AP; Blomgren PM; Handa RK; Johnson CD; Gao S; Pishchalnikov YA; Lingeman JE BJU Int; 2012 Nov; 110(9):1376-85. PubMed ID: 22519983 [TBL] [Abstract][Full Text] [Related]
4. Dual-head lithotripsy in synchronous mode: acute effect on renal function and morphology in the pig. Handa RK; McAteer JA; Willis LR; Pishchalnikov YA; Connors BA; Ying J; Lingeman JE; Evan AP BJU Int; 2007 May; 99(5):1134-42. PubMed ID: 17309558 [TBL] [Abstract][Full Text] [Related]
5. Stone fragmentation during shock wave lithotripsy is improved by slowing the shock wave rate: studies with a new animal model. Paterson RF; Lifshitz DA; Lingeman JE; Evan AP; Connors BA; Fineberg NS; Williams JC; McAteer JA J Urol; 2002 Nov; 168(5):2211-5. PubMed ID: 12394761 [TBL] [Abstract][Full Text] [Related]
6. Comparison of tissue injury from focused ultrasonic propulsion of kidney stones versus extracorporeal shock wave lithotripsy. Connors BA; Evan AP; Blomgren PM; Hsi RS; Harper JD; Sorensen MD; Wang YN; Simon JC; Paun M; Starr F; Cunitz BW; Bailey MR; Lingeman JE J Urol; 2014 Jan; 191(1):235-41. PubMed ID: 23917165 [TBL] [Abstract][Full Text] [Related]
7. Dual pulse shock wave lithotripsy: in vitro and in vivo study. Loske AM; Fernández F; Zendejas H; Paredes M; Castaño-Tostado E J Urol; 2005 Dec; 174(6):2388-92. PubMed ID: 16280853 [TBL] [Abstract][Full Text] [Related]
8. Does rate matter? The results of a randomized controlled trial of 60 versus 120 shocks per minute for shock wave lithotripsy of renal calculi. Davenport K; Minervini A; Keoghane S; Parkin J; Keeley FX; Timoney AG J Urol; 2006 Nov; 176(5):2055-8; discussion 2058. PubMed ID: 17070254 [TBL] [Abstract][Full Text] [Related]
9. Using 300 Pretreatment Shock Waves in a Voltage Ramping Protocol Can Significantly Reduce Tissue Injury During Extracorporeal Shock Wave Lithotripsy. Connors BA; Evan AP; Handa RK; Blomgren PM; Johnson CD; Liu Z; Lingeman JE J Endourol; 2016 Sep; 30(9):1004-8. PubMed ID: 27307070 [TBL] [Abstract][Full Text] [Related]
10. Prevention of lithotripsy-induced renal injury by pretreating kidneys with low-energy shock waves. Willis LR; Evan AP; Connors BA; Handa RK; Blomgren PM; Lingeman JE J Am Soc Nephrol; 2006 Mar; 17(3):663-73. PubMed ID: 16452495 [TBL] [Abstract][Full Text] [Related]
11. The use of shock wave lithotripsy for renal calculi. Putman SS; Hamilton BD; Johnson DB Curr Opin Urol; 2004 Mar; 14(2):117-21. PubMed ID: 15075841 [TBL] [Abstract][Full Text] [Related]
12. Detection and Evaluation of Renal Injury in Burst Wave Lithotripsy Using Ultrasound and Magnetic Resonance Imaging. May PC; Kreider W; Maxwell AD; Wang YN; Cunitz BW; Blomgren PM; Johnson CD; Park JSH; Bailey MR; Lee D; Harper JD; Sorensen MD J Endourol; 2017 Aug; 31(8):786-792. PubMed ID: 28521550 [TBL] [Abstract][Full Text] [Related]
13. The efficacy of extracorporeal shock wave lithotripsy for isolated lower pole calculi compared with isolated middle and upper caliceal calculi. Obek C; Onal B; Kantay K; Kalkan M; Yalçin V; Oner A; Solok V; Tansu N J Urol; 2001 Dec; 166(6):2081-4; discussion 2085. PubMed ID: 11696710 [TBL] [Abstract][Full Text] [Related]
14. Prospective randomized comparative study of the effectiveness and safety of electrohydraulic and electromagnetic extracorporeal shock wave lithotriptors. Sheir KZ; Madbouly K; Elsobky E J Urol; 2003 Aug; 170(2 Pt 1):389-92. PubMed ID: 12853782 [TBL] [Abstract][Full Text] [Related]
15. Shock wave lithotripsy causes ipsilateral renal injury remote from the focal point: the role of regional vasoconstriction. Delvecchio F; Auge BK; Munver R; Brown SA; Brizuela R; Zhong P; Preminger GM J Urol; 2003 Apr; 169(4):1526-9. PubMed ID: 12629408 [TBL] [Abstract][Full Text] [Related]
16. Treatment protocols to reduce renal injury during shock wave lithotripsy. McAteer JA; Evan AP; Williams JC; Lingeman JE Curr Opin Urol; 2009 Mar; 19(2):192-5. PubMed ID: 19195131 [TBL] [Abstract][Full Text] [Related]
17. Enhanced kidney stone fragmentation by short delay tandem conventional and modified lithotriptor shock waves: a numerical analysis. Tham LM; Lee HP; Lu C J Urol; 2007 Jul; 178(1):314-9. PubMed ID: 17499770 [TBL] [Abstract][Full Text] [Related]
18. Shock wave lithotripsy targeting of the kidney and pancreas does not increase the severity of metabolic syndrome in a porcine model. Handa RK; Evan AP; Connors BA; Johnson CD; Liu Z; Alloosh M; Sturek M; Evans-Molina C; Mandeville JA; Gnessin E; Lingeman JE J Urol; 2014 Oct; 192(4):1257-65. PubMed ID: 24657667 [TBL] [Abstract][Full Text] [Related]
19. Evaluation of renal function in children undergoing extracorporeal shock wave lithotripsy. Fayad A; El-Sheikh MG; Abdelmohsen M; Abdelraouf H J Urol; 2010 Sep; 184(3):1111-4. PubMed ID: 20650495 [TBL] [Abstract][Full Text] [Related]
20. Extracorporeal shock wave lithotripsy monotherapy: experience with piezoelectric second generation lithotriptor in 642 patients. Kim SC; Moon YT; Kim KD J Urol; 1989 Sep; 142(3):674-8. PubMed ID: 2769842 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]