BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 19095493)

  • 1. The 'inner circle' of the cereal genomes.
    Bolot S; Abrouk M; Masood-Quraishi U; Stein N; Messing J; Feuillet C; Salse J
    Curr Opin Plant Biol; 2009 Apr; 12(2):119-25. PubMed ID: 19095493
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improved criteria and comparative genomics tool provide new insights into grass paleogenomics.
    Salse J; Abrouk M; Murat F; Quraishi UM; Feuillet C
    Brief Bioinform; 2009 Nov; 10(6):619-30. PubMed ID: 19720678
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification and characterization of shared duplications between rice and wheat provide new insight into grass genome evolution.
    Salse J; Bolot S; Throude M; Jouffe V; Piegu B; Quraishi UM; Calcagno T; Cooke R; Delseny M; Feuillet C
    Plant Cell; 2008 Jan; 20(1):11-24. PubMed ID: 18178768
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Palaeogenomics in cereals: modeling of ancestors for modern species improvement.
    Salse J; Feuillet C
    C R Biol; 2011 Mar; 334(3):205-11. PubMed ID: 21377615
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Grass genome organization and evolution.
    Devos KM
    Curr Opin Plant Biol; 2010 Apr; 13(2):139-45. PubMed ID: 20064738
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sixty million years in evolution of soft grain trait in grasses: emergence of the softness locus in the common ancestor of Pooideae and Ehrhartoideae, after their divergence from Panicoideae.
    Charles M; Tang H; Belcram H; Paterson A; Gornicki P; Chalhoub B
    Mol Biol Evol; 2009 Jul; 26(7):1651-61. PubMed ID: 19395588
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recurrent sequence exchange between homeologous grass chromosomes.
    Wicker T; Wing RA; Schubert I
    Plant J; 2015 Nov; 84(4):747-59. PubMed ID: 26408412
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Updating the 'crop circle'.
    Devos KM
    Curr Opin Plant Biol; 2005 Apr; 8(2):155-62. PubMed ID: 15752995
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Patterns in grass genome evolution.
    Bennetzen JL
    Curr Opin Plant Biol; 2007 Apr; 10(2):176-81. PubMed ID: 17291821
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Consequences of genome duplication.
    Sémon M; Wolfe KH
    Curr Opin Genet Dev; 2007 Dec; 17(6):505-12. PubMed ID: 18006297
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Palaeogenomics of plants: synteny-based modelling of extinct ancestors.
    Abrouk M; Murat F; Pont C; Messing J; Jackson S; Faraut T; Tannier E; Plomion C; Cooke R; Feuillet C; Salse J
    Trends Plant Sci; 2010 Sep; 15(9):479-87. PubMed ID: 20638891
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reconstruction of monocotelydoneous proto-chromosomes reveals faster evolution in plants than in animals.
    Salse J; Abrouk M; Bolot S; Guilhot N; Courcelle E; Faraut T; Waugh R; Close TJ; Messing J; Feuillet C
    Proc Natl Acad Sci U S A; 2009 Sep; 106(35):14908-13. PubMed ID: 19706486
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ancestral grass karyotype reconstruction unravels new mechanisms of genome shuffling as a source of plant evolution.
    Murat F; Xu JH; Tannier E; Abrouk M; Guilhot N; Pont C; Messing J; Salse J
    Genome Res; 2010 Nov; 20(11):1545-57. PubMed ID: 20876790
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ancestral reconstruction of segmental duplications reveals punctuated cores of human genome evolution.
    Jiang Z; Tang H; Ventura M; Cardone MF; Marques-Bonet T; She X; Pevzner PA; Eichler EE
    Nat Genet; 2007 Nov; 39(11):1361-8. PubMed ID: 17922013
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Unraveling ancient hexaploidy through multiply-aligned angiosperm gene maps.
    Tang H; Wang X; Bowers JE; Ming R; Alam M; Paterson AH
    Genome Res; 2008 Dec; 18(12):1944-54. PubMed ID: 18832442
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The nucleotype, the natural karyotype and the ancestral genome.
    Bennett MD
    Symp Soc Exp Biol; 1996; 50():45-52. PubMed ID: 9039435
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Recombinant genome of cereals: the pattern of formation and the role in evolution of polyploid species].
    Dubovets NI; Sycheva EA; Soloveĭ LA; Styk TI; Bondarevich EB
    Genetika; 2008 Jan; 44(1):54-61. PubMed ID: 18409387
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Conservation and diversification of flower development: a view from the study of grass flower development].
    Hirano HY
    Tanpakushitsu Kakusan Koso; 2006 Jul; 51(8):921-32. PubMed ID: 16838666
    [No Abstract]   [Full Text] [Related]  

  • 19. The evolution of plant genomes: scaling up from a population perspective.
    Flowers JM; Purugganan MD
    Curr Opin Genet Dev; 2008 Dec; 18(6):565-70. PubMed ID: 19131240
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Introgression of Aegilops genetic material into the genome of hexaploid triticale].
    Orlovskaia OA; Kaminskaia LN; Khotyleva LV
    Genetika; 2007 Mar; 43(3):363-9. PubMed ID: 17486755
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.