These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

248 related articles for article (PubMed ID: 19095615)

  • 1. Stochastic dynamics and non-equilibrium thermodynamics of a bistable chemical system: the Schlögl model revisited.
    Vellela M; Qian H
    J R Soc Interface; 2009 Oct; 6(39):925-40. PubMed ID: 19095615
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Non-Equilibrium Thermodynamics and Stochastic Dynamics of a Bistable Catalytic Surface Reaction.
    Pineda M; Stamatakis M
    Entropy (Basel); 2018 Oct; 20(11):. PubMed ID: 33266535
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bistability: requirements on cell-volume, protein diffusion, and thermodynamics.
    Endres RG
    PLoS One; 2015; 10(4):e0121681. PubMed ID: 25874711
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Temperature-driven coherence resonance and stochastic resonance in a thermochemical system.
    Lemarchand A; Gorecki J; Gorecki A; Nowakowski B
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Feb; 89(2):022916. PubMed ID: 25353554
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermodynamic limit of a nonequilibrium steady state: Maxwell-type construction for a bistable biochemical system.
    Ge H; Qian H
    Phys Rev Lett; 2009 Oct; 103(14):148103. PubMed ID: 19905606
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Diffusion approximations to the chemical master equation only have a consistent stochastic thermodynamics at chemical equilibrium.
    Horowitz JM
    J Chem Phys; 2015 Jul; 143(4):044111. PubMed ID: 26233111
    [TBL] [Abstract][Full Text] [Related]  

  • 7. On Differences between Deterministic and Stochastic Models of Chemical Reactions: Schlögl Solved with ZI-Closure.
    Vlysidis M; Kaznessis YN
    Entropy (Basel); 2018 Sep; 20(9):. PubMed ID: 33265767
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stochastic quasi-steady state approximations for asymptotic solutions of the chemical master equation.
    Alarcón T
    J Chem Phys; 2014 May; 140(18):184109. PubMed ID: 24832255
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An equation-free probabilistic steady-state approximation: dynamic application to the stochastic simulation of biochemical reaction networks.
    Salis H; Kaznessis YN
    J Chem Phys; 2005 Dec; 123(21):214106. PubMed ID: 16356038
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multiscale Hy3S: hybrid stochastic simulation for supercomputers.
    Salis H; Sotiropoulos V; Kaznessis YN
    BMC Bioinformatics; 2006 Feb; 7():93. PubMed ID: 16504125
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Accuracy of the Michaelis-Menten approximation when analysing effects of molecular noise.
    Lawson MJ; Petzold L; Hellander A
    J R Soc Interface; 2015 May; 12(106):. PubMed ID: 25833240
    [TBL] [Abstract][Full Text] [Related]  

  • 12. On the origins of approximations for stochastic chemical kinetics.
    Haseltine EL; Rawlings JB
    J Chem Phys; 2005 Oct; 123(16):164115. PubMed ID: 16268689
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Master equation for a bistable chemical system with perturbed particle velocity distribution function.
    Dziekan P; Lemarchand A; Nowakowski B
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Feb; 85(2 Pt 1):021128. PubMed ID: 22463173
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A markov model based analysis of stochastic biochemical systems.
    Ghosh P; Ghosh S; Basu K; Das SK
    Comput Syst Bioinformatics Conf; 2007; 6():121-32. PubMed ID: 17951818
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Accurate hybrid stochastic simulation of a system of coupled chemical or biochemical reactions.
    Salis H; Kaznessis Y
    J Chem Phys; 2005 Feb; 122(5):54103. PubMed ID: 15740306
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamics of a stochastic spatially extended system predicted by comparing deterministic and stochastic attractors of the corresponding birth-death process.
    Zuk PJ; Kochańczyk M; Jaruszewicz J; Bednorz W; Lipniacki T
    Phys Biol; 2012 Oct; 9(5):055002. PubMed ID: 23011381
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Time reversibility and nonequilibrium thermodynamics of second-order stochastic processes.
    Ge H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Feb; 89(2):022127. PubMed ID: 25353442
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Validity conditions for moment closure approximations in stochastic chemical kinetics.
    Schnoerr D; Sanguinetti G; Grima R
    J Chem Phys; 2014 Aug; 141(8):084103. PubMed ID: 25173001
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mass fluctuation kinetics: capturing stochastic effects in systems of chemical reactions through coupled mean-variance computations.
    Gómez-Uribe CA; Verghese GC
    J Chem Phys; 2007 Jan; 126(2):024109. PubMed ID: 17228945
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The smallest chemical reaction system with bistability.
    Wilhelm T
    BMC Syst Biol; 2009 Sep; 3():90. PubMed ID: 19737387
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.