These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 19095617)

  • 21. A dynamical model of programmed -1 ribosomal frameshifting.
    Xie P
    J Theor Biol; 2013 Nov; 336():119-31. PubMed ID: 23911574
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Near-cognate peptidyl-tRNAs promote +1 programmed translational frameshifting in yeast.
    Sundararajan A; Michaud WA; Qian Q; Stahl G; Farabaugh PJ
    Mol Cell; 1999 Dec; 4(6):1005-15. PubMed ID: 10635325
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A sequence required for -1 ribosomal frameshifting located four kilobases downstream of the frameshift site.
    Paul CP; Barry JK; Dinesh-Kumar SP; Brault V; Miller WA
    J Mol Biol; 2001 Jul; 310(5):987-99. PubMed ID: 11502008
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Precise alignment of peptidyl tRNA by the decoding center is essential for EF-G-dependent translocation.
    Garcia-Ortega L; Stephen J; Joseph S
    Mol Cell; 2008 Oct; 32(2):292-9. PubMed ID: 18951096
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Correlation between mechanical strength of messenger RNA pseudoknots and ribosomal frameshifting.
    Hansen TM; Reihani SN; Oddershede LB; Sørensen MA
    Proc Natl Acad Sci U S A; 2007 Apr; 104(14):5830-5. PubMed ID: 17389398
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Analyses of frameshifting at UUU-pyrimidine sites.
    Schwartz R; Curran JF
    Nucleic Acids Res; 1997 May; 25(10):2005-11. PubMed ID: 9115369
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Increased ribosomal accuracy increases a programmed translational frameshift in Escherichia coli.
    Sipley J; Goldman E
    Proc Natl Acad Sci U S A; 1993 Mar; 90(6):2315-9. PubMed ID: 8460140
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Maintenance of the correct open reading frame by the ribosome.
    Hansen TM; Baranov PV; Ivanov IP; Gesteland RF; Atkins JF
    EMBO Rep; 2003 May; 4(5):499-504. PubMed ID: 12717454
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Interaction of ribosome recycling factor and elongation factor EF-G with E. coli ribosomes studied by the surface plasmon resonance technique.
    Ishino T; Atarashi K; Uchiyama S; Yamami T; Saihara Y; Yoshida T; Hara H; Yokose K; Kobayashi Y; Nakamura Y
    Genes Cells; 2000 Dec; 5(12):953-63. PubMed ID: 11168582
    [TBL] [Abstract][Full Text] [Related]  

  • 30. IF2 and unique features of initiator tRNA
    Roy B; Liu Q; Shoji S; Fredrick K
    RNA Biol; 2018; 15(4-5):604-613. PubMed ID: 28914580
    [TBL] [Abstract][Full Text] [Related]  

  • 31. EF-G catalyzed translocation dynamics in the presence of ribosomal frameshifting stimulatory signals.
    Kim HK; Tinoco I
    Nucleic Acids Res; 2017 Mar; 45(5):2865-2874. PubMed ID: 27799473
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Antisense-induced ribosomal frameshifting.
    Henderson CM; Anderson CB; Howard MT
    Nucleic Acids Res; 2006; 34(15):4302-10. PubMed ID: 16920740
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Regulation of the uncoupled GTPase activity of elongation factor G (EF-G) by the conformations of the ribosomal subunits.
    Nagel K; Voigt J
    Biochim Biophys Acta; 1993 Aug; 1174(2):153-61. PubMed ID: 8357832
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Conditional Switch between Frameshifting Regimes upon Translation of dnaX mRNA.
    Caliskan N; Wohlgemuth I; Korniy N; Pearson M; Peske F; Rodnina MV
    Mol Cell; 2017 May; 66(4):558-567.e4. PubMed ID: 28525745
    [TBL] [Abstract][Full Text] [Related]  

  • 35. An mRNA sequence derived from a programmed frameshifting signal decreases codon discrimination during translation initiation.
    Raman A; Guarraia C; Taliaferro D; Stahl G; Farabaugh PJ
    RNA; 2006 Jul; 12(7):1154-60. PubMed ID: 16682566
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effect of frameshift-inducing mutants of elongation factor 1alpha on programmed +1 frameshifting in yeast.
    Farabaugh PJ; Vimaladithan A
    RNA; 1998 Jan; 4(1):38-46. PubMed ID: 9436906
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Elongation factor Tu ternary complex binds to small ribosomal subunits in a functionally active state.
    Langer JA; Jurnak F; Lake JA
    Biochemistry; 1984 Dec; 23(25):6171-8. PubMed ID: 6395891
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The pathway to GTPase activation of elongation factor SelB on the ribosome.
    Fischer N; Neumann P; Bock LV; Maracci C; Wang Z; Paleskava A; Konevega AL; Schröder GF; Grubmüller H; Ficner R; Rodnina MV; Stark H
    Nature; 2016 Dec; 540(7631):80-85. PubMed ID: 27842381
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Evidence that uncharged tRNA can inhibit a programmed translational frameshift in Escherichia coli.
    Gao W; Jakubowski H; Goldman E
    J Mol Biol; 1995 Aug; 251(2):210-6. PubMed ID: 7643397
    [TBL] [Abstract][Full Text] [Related]  

  • 40. An mRNA sequence derived from the yeast EST3 gene stimulates programmed +1 translational frameshifting.
    Taliaferro D; Farabaugh PJ
    RNA; 2007 Apr; 13(4):606-13. PubMed ID: 17329356
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.