BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

252 related articles for article (PubMed ID: 19095996)

  • 1. Leukocyte cathepsin S is a potent regulator of both cell and matrix turnover in advanced atherosclerosis.
    de Nooijer R; Bot I; von der Thüsen JH; Leeuwenburgh MA; Overkleeft HS; Kraaijeveld AO; Dorland R; van Santbrink PJ; van Heiningen SH; Westra MM; Kovanen PT; Jukema JW; van der Wall EE; van Berkel TJ; Shi GP; Biessen EA
    Arterioscler Thromb Vasc Biol; 2009 Feb; 29(2):188-94. PubMed ID: 19095996
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of bone marrow-derived CC-chemokine receptor 5 in the development of atherosclerosis of low-density lipoprotein receptor knockout mice.
    Potteaux S; Combadière C; Esposito B; Lecureuil C; Ait-Oufella H; Merval R; Ardouin P; Tedgui A; Mallat Z
    Arterioscler Thromb Vasc Biol; 2006 Aug; 26(8):1858-63. PubMed ID: 16763157
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Poly(ADP-ribose) polymerase inhibition reduces atherosclerotic plaque size and promotes factors of plaque stability in apolipoprotein E-deficient mice: effects on macrophage recruitment, nuclear factor-kappaB nuclear translocation, and foam cell death.
    Oumouna-Benachour K; Hans CP; Suzuki Y; Naura A; Datta R; Belmadani S; Fallon K; Woods C; Boulares AH
    Circulation; 2007 May; 115(18):2442-50. PubMed ID: 17438151
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Disruption of the cathepsin K gene reduces atherosclerosis progression and induces plaque fibrosis but accelerates macrophage foam cell formation.
    Lutgens E; Lutgens SP; Faber BC; Heeneman S; Gijbels MM; de Winther MP; Frederik P; van der Made I; Daugherty A; Sijbers AM; Fisher A; Long CJ; Saftig P; Black D; Daemen MJ; Cleutjens KB
    Circulation; 2006 Jan; 113(1):98-107. PubMed ID: 16365196
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Apoptosis signal-regulating kinase 1 deficiency accelerates hyperlipidemia-induced atheromatous plaques via suppression of macrophage apoptosis.
    Yamada S; Ding Y; Tanimoto A; Wang KY; Guo X; Li Z; Tasaki T; Nabesima A; Murata Y; Shimajiri S; Kohno K; Ichijo H; Sasaguri Y
    Arterioscler Thromb Vasc Biol; 2011 Jul; 31(7):1555-64. PubMed ID: 21527753
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hematopoietic arginase 1 deficiency results in decreased leukocytosis and increased foam cell formation but does not affect atherosclerosis.
    Ren B; Van Kampen E; Van Berkel TJ; Cruickshank SM; Van Eck M
    Atherosclerosis; 2017 Jan; 256():35-46. PubMed ID: 27998825
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Leukocyte cathepsin C deficiency attenuates atherosclerotic lesion progression by selective tuning of innate and adaptive immune responses.
    Herías V; Biessen EA; Beckers C; Delsing D; Liao M; Daemen MJ; Pham CC; Heeneman S
    Arterioscler Thromb Vasc Biol; 2015 Jan; 35(1):79-86. PubMed ID: 25395616
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Leukocyte-derived interleukin 10 is required for protection against atherosclerosis in low-density lipoprotein receptor knockout mice.
    Potteaux S; Esposito B; van Oostrom O; Brun V; Ardouin P; Groux H; Tedgui A; Mallat Z
    Arterioscler Thromb Vasc Biol; 2004 Aug; 24(8):1474-8. PubMed ID: 15178562
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Leucocyte cathepsin K affects atherosclerotic lesion composition and bone mineral density in low-density lipoprotein receptor deficient mice.
    Guo J; Bot I; de Nooijer R; Hoffman SJ; Stroup GB; Biessen EA; Benson GM; Groot PH; Van Eck M; Van Berkel TJ
    Cardiovasc Res; 2009 Feb; 81(2):278-85. PubMed ID: 19015136
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lack of the cysteine protease inhibitor cystatin C promotes atherosclerosis in apolipoprotein E-deficient mice.
    Bengtsson E; To F; Håkansson K; Grubb A; Brånén L; Nilsson J; Jovinge S
    Arterioscler Thromb Vasc Biol; 2005 Oct; 25(10):2151-6. PubMed ID: 16051881
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bone marrow-derived multidrug resistance protein ABCB4 protects against atherosclerotic lesion development in LDL receptor knockout mice.
    Pennings M; Hildebrand RB; Ye D; Kunne C; Van Berkel TJ; Groen AK; Van Eck M
    Cardiovasc Res; 2007 Oct; 76(1):175-83. PubMed ID: 17560559
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thrombospondin-1 deficiency accelerates atherosclerotic plaque maturation in ApoE-/- mice.
    Moura R; Tjwa M; Vandervoort P; Van Kerckhoven S; Holvoet P; Hoylaerts MF
    Circ Res; 2008 Nov; 103(10):1181-9. PubMed ID: 18818405
    [TBL] [Abstract][Full Text] [Related]  

  • 13. P55 tumour necrosis factor receptor in bone marrow-derived cells promotes atherosclerosis development in low-density lipoprotein receptor knock-out mice.
    Xanthoulea S; Gijbels MJ; van der Made I; Mujcic H; Thelen M; Vergouwe MN; Ambagts MH; Hofker MH; de Winther MP
    Cardiovasc Res; 2008 Nov; 80(2):309-18. PubMed ID: 18628255
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Myeloid Kdm6b deficiency results in advanced atherosclerosis.
    Neele AE; Gijbels MJJ; van der Velden S; Hoeksema MA; Boshuizen MCS; Prange KHM; Chen HJ; Van den Bossche J; van Roomen CPPA; Shami A; Levels JHM; Kroon J; Lucas T; Dimmeler S; Lutgens E; de Winther MPJ
    Atherosclerosis; 2018 Aug; 275():156-165. PubMed ID: 29908485
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bone-marrow-derived matrix metalloproteinase-14: a novel target for plaque stability.
    Shimokawa H
    Circulation; 2008 Feb; 117(7):863-5. PubMed ID: 18285576
    [No Abstract]   [Full Text] [Related]  

  • 16. Akt2/LDLr double knockout mice display impaired glucose tolerance and develop more complex atherosclerotic plaques than LDLr knockout mice.
    Rensing KL; de Jager SC; Stroes ES; Vos M; Twickler MT; Dallinga-Thie GM; de Vries CJ; Kuiper J; Bot I; von der Thüsen JH
    Cardiovasc Res; 2014 Feb; 101(2):277-87. PubMed ID: 24220638
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cathepsin L deficiency reduces diet-induced atherosclerosis in low-density lipoprotein receptor-knockout mice.
    Kitamoto S; Sukhova GK; Sun J; Yang M; Libby P; Love V; Duramad P; Sun C; Zhang Y; Yang X; Peters C; Shi GP
    Circulation; 2007 Apr; 115(15):2065-75. PubMed ID: 17404153
    [TBL] [Abstract][Full Text] [Related]  

  • 18. PDZK1 in leukocytes protects against cellular apoptosis and necrotic core development in atherosclerotic plaques in high fat diet fed ldl receptor deficient mice.
    Yu P; Qian AS; Chathely KM; Trigatti BL
    Atherosclerosis; 2018 Sep; 276():171-181. PubMed ID: 29853191
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Endogenous p53 protects vascular smooth muscle cells from apoptosis and reduces atherosclerosis in ApoE knockout mice.
    Mercer J; Figg N; Stoneman V; Braganza D; Bennett MR
    Circ Res; 2005 Apr; 96(6):667-74. PubMed ID: 15746445
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pharmacological inhibition of cathepsin S decreases atherosclerotic lesions in Apoe-/- mice.
    Samokhin AO; Lythgo PA; Gauthier JY; Percival MD; Brömme D
    J Cardiovasc Pharmacol; 2010 Jul; 56(1):98-105. PubMed ID: 20410833
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.