BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

347 related articles for article (PubMed ID: 19096139)

  • 41. Cells of origin, course, and termination patterns of the ventral, uncrossed component of the mature rat corticospinal tract.
    Brösamle C; Schwab ME
    J Comp Neurol; 1997 Sep; 386(2):293-303. PubMed ID: 9295153
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Spinal neurons involved in the control of the seminal vesicles: a transsynaptic labeling study using pseudorabies virus in rats.
    Sun XQ; Xu C; Leclerc P; Benoît G; Giuliano F; Droupy S
    Neuroscience; 2009 Jan; 158(2):786-97. PubMed ID: 18977414
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Postnatal development of corticospinal postsynaptic action.
    Meng Z; Martin JH
    J Neurophysiol; 2003 Aug; 90(2):683-92. PubMed ID: 12702708
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Diffuse perineuronal nets and modified pyramidal cells immunoreactive for glutamate and the GABA(A) receptor alpha1 subunit form a unique entity in rat cerebral cortex.
    Wegner F; Härtig W; Bringmann A; Grosche J; Wohlfarth K; Zuschratter W; Brückner G
    Exp Neurol; 2003 Dec; 184(2):705-14. PubMed ID: 14769362
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The rat corticospinal system is functionally and anatomically segregated.
    Olivares-Moreno R; Moreno-Lopez Y; Concha L; Martínez-Lorenzana G; Condés-Lara M; Cordero-Erausquin M; Rojas-Piloni G
    Brain Struct Funct; 2017 Dec; 222(9):3945-3958. PubMed ID: 28528380
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Manual dexterity and corticospinal connectivity following unilateral section of the cervical spinal cord in the macaque monkey.
    Galea MP; Darian-Smith I
    J Comp Neurol; 1997 May; 381(3):307-19. PubMed ID: 9133570
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Global diffuse distribution in the brain and efficient gene delivery to the dorsal root ganglia by intrathecal injection of adeno-associated viral vector serotype 1.
    Iwamoto N; Watanabe A; Yamamoto M; Miyake N; Kurai T; Teramoto A; Shimada T
    J Gene Med; 2009 Jun; 11(6):498-505. PubMed ID: 19338016
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Growth, differentiation, and viability of fetal rat cortical and spinal cord implants into adult rat spinal cord.
    Patel U; Bernstein JJ
    J Neurosci Res; 1983; 9(3):303-10. PubMed ID: 6854669
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A novel method for simultaneous anterograde and retrograde labeling of spinal cord motor tracts in the same animal.
    Tsai EC; van Bendegem RL; Hwang SW; Tator CH
    J Histochem Cytochem; 2001 Sep; 49(9):1111-22. PubMed ID: 11511680
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Increased expression of the growth-associated protein 43 gene in the sensorimotor cortex of the macaque monkey after lesioning the lateral corticospinal tract.
    Higo N; Nishimura Y; Murata Y; Oishi T; Yoshino-Saito K; Takahashi M; Tsuboi F; Isa T
    J Comp Neurol; 2009 Oct; 516(6):493-506. PubMed ID: 19672995
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Retrograde repression of growth-associated protein-43 mRNA expression in rat cortical neurons.
    Karimi-Abdolrezaee S; Schreyer DJ
    J Neurosci; 2002 Mar; 22(5):1816-22. PubMed ID: 11880510
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Origins and collateralization of corticospinal, corticopontine, corticorubral and corticostriatal tracts: a multiple retrograde fluorescent tracing study.
    Akintunde A; Buxton DF
    Brain Res; 1992 Jul; 586(2):208-18. PubMed ID: 1381650
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Alpha calcium/calmodulin-dependent protein kinase II immunoreactivity in corticospinal neurons: combination of axonal transport method and immunofluorescence.
    Terashima T; Ochiishi T; Yamauchi T
    Anat Embryol (Berl); 1995 Aug; 192(2):123-36. PubMed ID: 7486009
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Lentiviral vector expressing retinoic acid receptor beta2 promotes recovery of function after corticospinal tract injury in the adult rat spinal cord.
    Yip PK; Wong LF; Pattinson D; Battaglia A; Grist J; Bradbury EJ; Maden M; McMahon SB; Mazarakis ND
    Hum Mol Genet; 2006 Nov; 15(21):3107-18. PubMed ID: 16984961
    [TBL] [Abstract][Full Text] [Related]  

  • 55. [Functional role of the red nucleus in the cerebral cortex-cerebellum-spinal cord communication system].
    Fanardzhian VV
    Usp Fiziol Nauk; 2001; 32(2):3-15. PubMed ID: 11548591
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Organization of corticospinal neurons in the cat.
    Groos WP; Ewing LK; Carter CM; Coulter JD
    Brain Res; 1978 Mar; 143(3):393-419. PubMed ID: 348267
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Topical versus diffuse organization of the corticospinal tract in the cat.
    Armand J
    J Physiol (Paris); 1978; 74(3):227-30. PubMed ID: 722597
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Comparing the function of the corticospinal system in different species: organizational differences for motor specialization?
    Lemon RN; Griffiths J
    Muscle Nerve; 2005 Sep; 32(3):261-79. PubMed ID: 15806550
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The corticospinal system: from development to motor control.
    Martin JH
    Neuroscientist; 2005 Apr; 11(2):161-73. PubMed ID: 15746384
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Evidence for the involvement of the spinoparabrachial pathway, but not the spinothalamic tract or post-synaptic dorsal column, in acute bone nociception.
    Williams MC; Ivanusic JJ
    Neurosci Lett; 2008 Oct; 443(3):246-50. PubMed ID: 18687382
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.