These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 190962)

  • 41. The 'scanning hypothesis' of rapid eye movements during REM sleep: a review of the evidence.
    Arnulf I
    Arch Ital Biol; 2011 Dec; 149(4):367-82. PubMed ID: 22205589
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Neuronal activity specific to REM sleep and its relationship to breathing.
    Netick A; Orem J; Dement W
    Brain Res; 1977 Jan; 120(2):197-207. PubMed ID: 188520
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Coding of information about rapid eye movements in the pontine reticular formation of alert monkeys.
    Henn V; Cohen B
    Brain Res; 1976 May; 108(2):307-25. PubMed ID: 819098
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Gaze shift duration, independent of amplitude, influences the number of spikes in the burst for medium-lead burst neurons in pontine reticular formation.
    Walton MM; Freedman EG
    Exp Brain Res; 2011 Oct; 214(2):225-39. PubMed ID: 21842410
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Activity of eye-movement-related neurons in the region of the interstitial nucleus of Cajal during sleep.
    Fukushima K; Fukushima J
    Neurosci Res; 1990 Nov; 9(2):126-39. PubMed ID: 2177532
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Tonic inhibition and ponto-geniculo-occipital-related activities shape abducens motoneuron discharge during REM sleep.
    Escudero M; Márquez-Ruiz J
    J Physiol; 2008 Jul; 586(14):3479-91. PubMed ID: 18499728
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Brainstem neurons responsible for postural, masseter or pharyngeal muscle atonia during paradoxical sleep in freely-moving cats.
    Sakai K; Neuzeret PC
    Arch Ital Biol; 2011 Dec; 149(4):325-47. PubMed ID: 22205587
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Pontine reticular formation neurons: relationship of discharge to motor activity.
    Siegel JM; McGinty DJ
    Science; 1977 May; 196(4290):678-80. PubMed ID: 193185
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Reversal of rapid eye movement sleep without atonia by chloramphenicol.
    Aguilar-Roblero R; Arankowsky G; Drucker-Colin R; Morrison AR; Bayon A
    Brain Res; 1984 Jul; 305(1):19-26. PubMed ID: 6744058
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Raphe unit activity in freely moving cats: correlation with level of behavioral arousal.
    Trulson ME; Jacobs BL
    Brain Res; 1979 Mar; 163(1):135-50. PubMed ID: 218676
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Respiratory nuclei share synaptic connectivity with pontine reticular regions regulating REM sleep.
    Lee LH; Friedman DB; Lydic R
    Am J Physiol; 1995 Feb; 268(2 Pt 1):L251-62. PubMed ID: 7864146
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Eye movements and abducens motoneuron behavior after cholinergic activation of the nucleus reticularis pontis caudalis.
    Márquez-Ruiz J; Escudero M
    Sleep; 2010 Nov; 33(11):1517-27. PubMed ID: 21102994
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Unit activity in the pontine reticular formation associated with eye movements.
    Cohen B; Henn V
    Brain Res; 1972 Nov; 46():403-10. PubMed ID: 4628952
    [No Abstract]   [Full Text] [Related]  

  • 54. Participation of medial pontine reticular formation in eye movement generation in monkey.
    Keller EL
    J Neurophysiol; 1974 Mar; 37(2):316-32. PubMed ID: 4205567
    [No Abstract]   [Full Text] [Related]  

  • 55. Responses of locus coeruleus and subcoeruleus neurons to sinusoidal stimulation of labyrinth receptors.
    Pompeiano O; Manzoni D; Barnes CD; Stampacchia G; d'Ascanio P
    Neuroscience; 1990; 35(2):227-48. PubMed ID: 2381509
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Head and eye movements in rats with pontine reticular lesions in comparison with primates: a scientific memoir and a fresh look at some old and 'new' data.
    Sirkin DW
    Behav Brain Res; 2012 Jun; 231(2):371-7. PubMed ID: 22044476
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Reliability of oculomotor command signals carried by individual neurons.
    Hu X; Jiang H; Gu C; Li C; Sparks DL
    Proc Natl Acad Sci U S A; 2007 May; 104(19):8137-42. PubMed ID: 17470812
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A cholinergic synaptically triggered event participates in the generation of persistent activity necessary for eye fixation.
    Navarro-López Jde D; Alvarado JC; Márquez-Ruiz J; Escudero M; Delgado-García JM; Yajeya J
    J Neurosci; 2004 Jun; 24(22):5109-18. PubMed ID: 15175380
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Responses of locus coeruleus and subcoeruleus neurons to sinusoidal neck rotation in decerebrate cat.
    Barnes CD; Manzoni D; Pompeiano O; Stampacchia G; d'Ascanio P
    Neuroscience; 1989; 31(2):371-92. PubMed ID: 2797442
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The neurochemical basis of REM sleep: a cholinergic mechanism responsible for rhythmic activation of the vestibulo-oculomotor system.
    Magherini PC; Pompeiano O; Thoden U
    Brain Res; 1971 Dec; 35(2):565-9. PubMed ID: 4332605
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.