These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

87 related articles for article (PubMed ID: 1909666)

  • 1. Is arachidonic acid a retrograde messenger in long-term potentiation?
    Lynch MA; Clements MP; Voss KL; Bramham CR; Bliss TV
    Biochem Soc Trans; 1991 Apr; 19(2):391-6. PubMed ID: 1909666
    [No Abstract]   [Full Text] [Related]  

  • 2. Presynaptic changes in long-term potentiation: elevated synaptosomal calcium concentration and basal phosphoinositide turnover in dentate gyrus.
    Lynch MA; Voss KL
    J Neurochem; 1991 Jan; 56(1):113-8. PubMed ID: 1846169
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Arachidonic acid inhibits uptake of amino acids and potentiates PKC effects on glutamate, but not GABA, exocytosis in isolated hippocampal nerve terminals.
    Breukel AI; Besselsen E; Lopes da Silva FH; Ghijsen WE
    Brain Res; 1997 Oct; 773(1-2):90-7. PubMed ID: 9409709
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Arachidonic acid increases inositol phospholipid metabolism and glutamate release in synaptosomes prepared from hippocampal tissue.
    Lynch MA; Voss KL
    J Neurochem; 1990 Jul; 55(1):215-21. PubMed ID: 1972388
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pharmacology of long-term potentiation. A model for learning reviewed.
    Beukers M; Boddeke EW
    Pharm Weekbl Sci; 1991 Feb; 13(1):7-12. PubMed ID: 1851982
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Arachidonic acid, but not sodium nitroprusside, stimulates presynaptic protein kinase C and phosphorylation of GAP-43 in rat hippocampal slices and synaptosomes.
    Luo Y; Vallano ML
    J Neurochem; 1995 Apr; 64(4):1808-18. PubMed ID: 7891109
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Arachidonic acid induces a long-term activity-dependent enhancement of synaptic transmission in the hippocampus.
    Williams JH; Errington ML; Lynch MA; Bliss TV
    Nature; 1989 Oct; 341(6244):739-42. PubMed ID: 2571939
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Protein kinase C subspecies in adult rat hippocampal synaptosomes. Activation by diacylglycerol and arachidonic acid.
    Shearman MS; Shinomura T; Oda T; Nishizuka Y
    FEBS Lett; 1991 Feb; 279(2):261-4. PubMed ID: 1900474
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High sensitivity of glutamate uptake to extracellular free arachidonic acid levels in rat cortical synaptosomes and astrocytes.
    Volterra A; Trotti D; Cassutti P; Tromba C; Salvaggio A; Melcangi RC; Racagni G
    J Neurochem; 1992 Aug; 59(2):600-6. PubMed ID: 1629731
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Retrograde messenger and synaptic plasticity].
    Tabuchi S; Shimizu T
    Tanpakushitsu Kakusan Koso; 1995 Apr; 40(6):673-81. PubMed ID: 7754052
    [No Abstract]   [Full Text] [Related]  

  • 11. A newly discovered protein kinase C activator (oleic acid) enhances long-term potentiation in the intact hippocampus.
    Linden DJ; Murakami K; Routtenberg A
    Brain Res; 1986 Aug; 379(2):358-63. PubMed ID: 3091192
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Long-term changes of synaptic transmission induced by arachidonic acid in the CA1 subfield of the rat hippocampus.
    Drapeau C; Pellerin L; Wolfe LS; Avoli M
    Neurosci Lett; 1990 Jul; 115(2-3):286-92. PubMed ID: 2122331
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Efflux of gamma-aminobutyric acid from and appearance of free arachidonic acid inside synaptosomes.
    Asakura T; Matsuda M
    Biochim Biophys Acta; 1984 Jun; 773(2):301-7. PubMed ID: 6428452
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Facilitation by arachidonic acid of acetylcholine release from the rat hippocampus.
    Almeida T; Cunha RA; Ribeiro JA
    Brain Res; 1999 Apr; 826(1):104-11. PubMed ID: 10216201
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tests of the roles of two diffusible substances in long-term potentiation: evidence for nitric oxide as a possible early retrograde messenger.
    O'Dell TJ; Hawkins RD; Kandel ER; Arancio O
    Proc Natl Acad Sci U S A; 1991 Dec; 88(24):11285-9. PubMed ID: 1684863
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Long-term synaptic transformation of hippocampal CA1 gamma-aminobutyric acid synapses and the effect of anandamide.
    Collin C; Devane WA; Dahl D; Lee CJ; Axelrod J; Alkon DL
    Proc Natl Acad Sci U S A; 1995 Oct; 92(22):10167-71. PubMed ID: 7479747
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Direct activation of purified protein kinase C by unsaturated fatty acids (oleate and arachidonate) in the absence of phospholipids and Ca2+.
    Murakami K; Routtenberg A
    FEBS Lett; 1985 Nov; 192(2):189-93. PubMed ID: 3934001
    [TBL] [Abstract][Full Text] [Related]  

  • 18. PKC-independent inhibition of glutamate exocytosis by arachidonic acid in rat cerebrocortical synaptosomes.
    Herrero I; Miras-Portugal MT; Sánchez-Prieto J
    FEBS Lett; 1992 Jan; 296(3):317-9. PubMed ID: 1347020
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reductions of gamma-aminobutyric acid and glutamate uptake and (Na+ + K+)-ATPase activity in brain slices and synaptosomes by arachidonic acid.
    Chan PH; Kerlan R; Fishman RA
    J Neurochem; 1983 Feb; 40(2):309-16. PubMed ID: 6130123
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Selective activation of the gamma-subspecies of protein kinase C from bovine cerebellum by arachidonic acid and its lipoxygenase metabolites.
    Shearman MS; Naor Z; Sekiguchi K; Kishimoto A; Nishizuka Y
    FEBS Lett; 1989 Jan; 243(2):177-82. PubMed ID: 2492951
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.