BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 19096759)

  • 1. Iron- and 2-oxoglutarate-dependent dioxygenases: an emerging group of molecular targets for nickel toxicity and carcinogenicity.
    Chen H; Costa M
    Biometals; 2009 Feb; 22(1):191-6. PubMed ID: 19096759
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Carcinogenic metals and the epigenome: understanding the effect of nickel, arsenic, and chromium.
    Chervona Y; Arita A; Costa M
    Metallomics; 2012 Jul; 4(7):619-27. PubMed ID: 22473328
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nickel ions inhibit histone demethylase JMJD1A and DNA repair enzyme ABH2 by replacing the ferrous iron in the catalytic centers.
    Chen H; Giri NC; Zhang R; Yamane K; Zhang Y; Maroney M; Costa M
    J Biol Chem; 2010 Mar; 285(10):7374-83. PubMed ID: 20042601
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Introduction: Metals in Biology: α-Ketoglutarate/Iron-Dependent Dioxygenases.
    Guengerich FP
    J Biol Chem; 2015 Aug; 290(34):20700-20701. PubMed ID: 26152720
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Depletion of intracellular ascorbate by the carcinogenic metals nickel and cobalt results in the induction of hypoxic stress.
    Salnikow K; Donald SP; Bruick RK; Zhitkovich A; Phang JM; Kasprzak KS
    J Biol Chem; 2004 Sep; 279(39):40337-44. PubMed ID: 15271983
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regulation of the 2-oxoglutarate-dependent dioxygenases and implications for cancer.
    Vissers MC; Kuiper C; Dachs GU
    Biochem Soc Trans; 2014 Aug; 42(4):945-51. PubMed ID: 25109984
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An assay for Fe(II)/2-oxoglutarate-dependent dioxygenases by enzyme-coupled detection of succinate formation.
    Luo L; Pappalardi MB; Tummino PJ; Copeland RA; Fraser ME; Grzyska PK; Hausinger RP
    Anal Biochem; 2006 Jun; 353(1):69-74. PubMed ID: 16643838
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Endogenous 2-oxoglutarate levels impact potencies of competitive HIF prolyl hydroxylase inhibitors.
    Thirstrup K; Christensen S; Møller HA; Ritzén A; Bergström AL; Sager TN; Jensen HS
    Pharmacol Res; 2011 Sep; 64(3):268-73. PubMed ID: 21504793
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Iron chelation and 2-oxoglutarate-dependent dioxygenase inhibition suppress mantle cell lymphoma's cyclin D1.
    Babosova O; Kapralova K; Raskova Kafkova L; Korinek V; Divoky V; Prchal JT; Lanikova L
    J Cell Mol Med; 2019 Nov; 23(11):7785-7795. PubMed ID: 31517438
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Protein Hydroxylation Catalyzed by 2-Oxoglutarate-dependent Oxygenases.
    Markolovic S; Wilkins SE; Schofield CJ
    J Biol Chem; 2015 Aug; 290(34):20712-20722. PubMed ID: 26152730
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis of 5-hydroxyectoine from ectoine: crystal structure of the non-heme iron(II) and 2-oxoglutarate-dependent dioxygenase EctD.
    Reuter K; Pittelkow M; Bursy J; Heine A; Craan T; Bremer E
    PLoS One; 2010 May; 5(5):e10647. PubMed ID: 20498719
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metabolism and epigenetics in the nervous system: Creating cellular fitness and resistance to neuronal death in neurological conditions via modulation of oxygen-, iron-, and 2-oxoglutarate-dependent dioxygenases.
    Karuppagounder SS; Kumar A; Shao DS; Zille M; Bourassa MW; Caulfield JT; Alim I; Ratan RR
    Brain Res; 2015 Dec; 1628(Pt B):273-287. PubMed ID: 26232572
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Soluble nickel interferes with cellular iron homeostasis.
    Davidson T; Chen H; Garrick MD; D'Angelo G; Costa M
    Mol Cell Biochem; 2005 Nov; 279(1-2):157-62. PubMed ID: 16283525
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prediction of novel families of enzymes involved in oxidative and other complex modifications of bases in nucleic acids.
    Iyer LM; Tahiliani M; Rao A; Aravind L
    Cell Cycle; 2009 Jun; 8(11):1698-710. PubMed ID: 19411852
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Catalytic Mechanisms of Fe(II)- and 2-Oxoglutarate-dependent Oxygenases.
    Martinez S; Hausinger RP
    J Biol Chem; 2015 Aug; 290(34):20702-20711. PubMed ID: 26152721
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dysregulation of 2-oxoglutarate-dependent dioxygenases by hyperglycaemia: does this link diabetes and vascular disease?
    Green HLH; Brewer AC
    Clin Epigenetics; 2020 Apr; 12(1):59. PubMed ID: 32345373
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interrogating the Druggability of the 2-Oxoglutarate-Dependent Dioxygenase Target Class by Chemical Proteomics.
    Joberty G; Boesche M; Brown JA; Eberhard D; Garton NS; Humphreys PG; Mathieson T; Muelbaier M; Ramsden NG; Reader V; Rueger A; Sheppard RJ; Westaway SM; Bantscheff M; Lee K; Wilson DM; Prinjha RK; Drewes G
    ACS Chem Biol; 2016 Jul; 11(7):2002-10. PubMed ID: 27197014
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Schizosaccharomyces pombe Ofd2 is a nuclear 2-oxoglutarate and iron dependent dioxygenase interacting with histones.
    Korvald H; Mølstad Moe AM; Cederkvist FH; Thiede B; Laerdahl JK; Bjørås M; Alseth I
    PLoS One; 2011; 6(9):e25188. PubMed ID: 21949882
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nickel decreases cellular iron level and converts cytosolic aconitase to iron-regulatory protein 1 in A549 cells.
    Chen H; Davidson T; Singleton S; Garrick MD; Costa M
    Toxicol Appl Pharmacol; 2005 Aug; 206(3):275-87. PubMed ID: 16039939
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cancer and altered metabolism: potential importance of hypoxia-inducible factor and 2-oxoglutarate-dependent dioxygenases.
    Kaelin WG
    Cold Spring Harb Symp Quant Biol; 2011; 76():335-45. PubMed ID: 22089927
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.