BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

391 related articles for article (PubMed ID: 19096837)

  • 1. Simultaneous flue gas bioremediation and reduction of microalgal biomass production costs.
    Douskova I; Doucha J; Livansky K; Machat J; Novak P; Umysova D; Zachleder V; Vitova M
    Appl Microbiol Biotechnol; 2009 Feb; 82(1):179-85. PubMed ID: 19096837
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microalgal biomass production and on-site bioremediation of carbon dioxide, nitrogen oxide and sulfur dioxide from flue gas using Chlorella sp. cultures.
    Chiu SY; Kao CY; Huang TT; Lin CJ; Ong SC; Chen CD; Chang JS; Lin CS
    Bioresour Technol; 2011 Oct; 102(19):9135-42. PubMed ID: 21802285
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Utilization of carbon dioxide in industrial flue gases for the cultivation of microalga Chlorella sp.
    Kao CY; Chen TY; Chang YB; Chiu TW; Lin HY; Chen CD; Chang JS; Lin CS
    Bioresour Technol; 2014 Aug; 166():485-93. PubMed ID: 24950094
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In-field experimental verification of cultivation of microalgae Chlorella sp. using the flue gas from a cogeneration unit as a source of carbon dioxide.
    Kastánek F; Sabata S; Solcová O; Maléterová Y; Kastánek P; Brányiková I; Kuthan K; Zachleder V
    Waste Manag Res; 2010 Nov; 28(11):961-6. PubMed ID: 20671004
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Flue gas compounds and microalgae: (bio-)chemical interactions leading to biotechnological opportunities.
    Van Den Hende S; Vervaeren H; Boon N
    Biotechnol Adv; 2012; 30(6):1405-24. PubMed ID: 22425735
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reduction of CO2 by a high-density culture of Chlorella sp. in a semicontinuous photobioreactor.
    Chiu SY; Kao CY; Chen CH; Kuan TC; Ong SC; Lin CS
    Bioresour Technol; 2008 Jun; 99(9):3389-96. PubMed ID: 17904359
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Performance evaluation of a green process for microalgal CO2 sequestration in closed photobioreactor using flue gas generated in-situ.
    Yadav G; Karemore A; Dash SK; Sen R
    Bioresour Technol; 2015 Sep; 191():399-406. PubMed ID: 25921786
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Carbon dioxide sequestration from industrial flue gas by Chlorella sorokiniana.
    Kumar K; Banerjee D; Das D
    Bioresour Technol; 2014; 152():225-33. PubMed ID: 24292202
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Growth characteristics of Botryococcus braunii 765 under high CO2 concentration in photobioreactor.
    Ge Y; Liu J; Tian G
    Bioresour Technol; 2011 Jan; 102(1):130-4. PubMed ID: 20584602
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of CO₂ supply conditions on lipid production of Chlorella vulgaris from enzymatic hydrolysates of lipid-extracted microalgal biomass residues.
    Zheng H; Gao Z; Yin F; Ji X; Huang H
    Bioresour Technol; 2012 Dec; 126():24-30. PubMed ID: 23073086
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Novel bioconversions of municipal effluent and CO₂ into protein riched Chlorella vulgaris biomass.
    Li C; Yang H; Li Y; Cheng L; Zhang M; Zhang L; Wang W
    Bioresour Technol; 2013 Mar; 132():171-7. PubMed ID: 23399495
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Growth of Seliberia carboxydohydrogena carboxy bacteria with an altered composition of the gas mixture].
    Volova TG; Stasishina GN; Kasaeva GE
    Mikrobiologiia; 1983; 52(4):533-7. PubMed ID: 6417461
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nitrogen starvation strategies and photobioreactor design for enhancing lipid content and lipid production of a newly isolated microalga Chlorella vulgaris ESP-31: implications for biofuels.
    Yeh KL; Chang JS
    Biotechnol J; 2011 Nov; 6(11):1358-66. PubMed ID: 21381209
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Adaptability of oleaginous microalgae Chlorococcum alkaliphilus MC-1 cultivated with flue gas].
    Yang X; Xiang W; Zhang F; Wu H; He H; Fan J
    Sheng Wu Gong Cheng Xue Bao; 2013 Mar; 29(3):370-81. PubMed ID: 23789278
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Selection of microalgae for lipid production under high levels carbon dioxide.
    Yoo C; Jun SY; Lee JY; Ahn CY; Oh HM
    Bioresour Technol; 2010 Jan; 101 Suppl 1():S71-4. PubMed ID: 19362826
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Flue-gas-influenced heavy metal bioaccumulation by the indigenous microalgae Desmodesmus communis LUCC 002.
    Palanisami S; Lee K; Balakrishnan B; Nam PK
    Environ Technol; 2015; 36(1-4):463-9. PubMed ID: 25184415
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of flue gas sparging on the performance of high rate algae ponds treating agro-industrial wastewaters.
    de Godos I; Blanco S; García-Encina PA; Becares E; Muñoz R
    J Hazard Mater; 2010 Jul; 179(1-3):1049-54. PubMed ID: 20434262
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biological CO2 fixation using Chlorella vulgaris and its thermal characteristics through thermogravimetric analysis.
    Razzak SA; Ali SA; Hossain MM; Mouanda AN
    Bioprocess Biosyst Eng; 2016 Nov; 39(11):1651-8. PubMed ID: 27307068
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cultivation of microplantlets derived from the marine red alga Agardhiella subulata in a stirred tank photobioreactor.
    Huang YM; Rorrer GL
    Biotechnol Prog; 2003; 19(2):418-27. PubMed ID: 12675582
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Semi-continuous cultivation of Chlorella vulgaris for treating undigested and digested dairy manures.
    Wang L; Wang Y; Chen P; Ruan R
    Appl Biochem Biotechnol; 2010 Dec; 162(8):2324-32. PubMed ID: 20567935
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.