BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

340 related articles for article (PubMed ID: 19096838)

  • 1. Cell wall adaptations of planktonic and biofilm Rhodococcus erythropolis cells to growth on C5 to C16 n-alkane hydrocarbons.
    de Carvalho CC; Wick LY; Heipieper HJ
    Appl Microbiol Biotechnol; 2009 Feb; 82(2):311-20. PubMed ID: 19096838
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Degradation of hydrocarbons and alcohols at different temperatures and salinities by Rhodococcus erythropolis DCL14.
    de Carvalho CC; da Fonseca MM
    FEMS Microbiol Ecol; 2005 Feb; 51(3):389-99. PubMed ID: 16329886
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of interfacial tensions in the translocation of Rhodococcus erythropolis during growth in a two phase culture.
    Iwabuchi N; Sharma PK; Sunairi M; Kishi E; Sugita K; van der Mei HC; Nakajima M; Busscher HJ
    Environ Sci Technol; 2009 Nov; 43(21):8290-4. PubMed ID: 19924958
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification and structural characterisation of novel trehalose dinocardiomycolates from n-alkane-grown Rhodococcus opacus 1CP.
    Niescher S; Wray V; Lang S; Kaschabek SR; Schlömann M
    Appl Microbiol Biotechnol; 2006 May; 70(5):605-11. PubMed ID: 16133336
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Selective transport and accumulation of alkanes by Rhodococcus erythropolis S+14He.
    Kim IS; Foght JM; Gray MR
    Biotechnol Bioeng; 2002 Dec; 80(6):650-9. PubMed ID: 12378606
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cytoplasmic wax ester accumulation during biofilm-driven substrate assimilation at the alkane--water interface by Marinobacter hydrocarbonoclasticus SP17.
    Klein B; Grossi V; Bouriat P; Goulas P; Grimaud R
    Res Microbiol; 2008 Mar; 159(2):137-44. PubMed ID: 18191384
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Carbon source-induced modifications in the mycolic acid content and cell wall permeability of Rhodococcus erythropolis E1.
    Sokolovská I; Rozenberg R; Riez C; Rouxhet PG; Agathos SN; Wattiau P
    Appl Environ Microbiol; 2003 Dec; 69(12):7019-27. PubMed ID: 14660344
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adaptation of Rhodococcus erythropolis cells for growth and bioremediation under extreme conditions.
    de Carvalho CC
    Res Microbiol; 2012 Feb; 163(2):125-36. PubMed ID: 22146587
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Kinetics of the degradation of aliphatic hydrocarbons by the bacteria Rhodococcus ruber and Rhodococcus erythropolis].
    Zhukov DV; Murygina VP; Kaliuzhnyĭ SV
    Prikl Biokhim Mikrobiol; 2007; 43(6):657-63. PubMed ID: 18173107
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Haloalkane hydrolysis by Rhodococcus erythropolis cells: comparison of conventional aqueous phase dehalogenation and nonconventional gas phase dehalogenation.
    Erable B; Goubet I; Lamare S; Legoy MD; Maugard T
    Biotechnol Bioeng; 2004 Apr; 86(1):47-54. PubMed ID: 15007840
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Particularities of alkane oxidation in Rhodococcus erythropolis EK-1 strain--producer of surface-active substances].
    Pyroh TP; Shevchuk TA; Klymenko IuO
    Mikrobiol Z; 2009; 71(4):9-14. PubMed ID: 19938610
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Adaptation of Rhodococcus erythropolis DCL14 to growth on n-alkanes, alcohols and terpenes.
    de Carvalho CC; Parreño-Marchante B; Neumann G; da Fonseca MM; Heipieper HJ
    Appl Microbiol Biotechnol; 2005 May; 67(3):383-8. PubMed ID: 15856218
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Lipid composition of Cunninghamella elegans cultivated on n-alkanes].
    Gerasimova NM; Le-Thi-Lin ; Bekhtereva MN
    Mikrobiologiia; 1975; 44(3):460-4. PubMed ID: 1160652
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Alkanotrophic Rhodococcus ruber as a biosurfactant producer.
    Philp JC; Kuyukina MS; Ivshina IB; Dunbar SA; Christofi N; Lang S; Wray V
    Appl Microbiol Biotechnol; 2002 Jul; 59(2-3):318-24. PubMed ID: 12111164
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Effect of composition of cellular lipids of formation of nonspecific antibiotic resistance of alkanotrophic rhodocoocci].
    Kuiukina MS; Ivshina IB; Rychkova MI; Chumakov OB
    Mikrobiologiia; 2000; 69(1):62-9. PubMed ID: 10808491
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Zeta-potential of n-alkane emulsion droplets and its role in substrate transport into yeast cells].
    Komarov EV; Ganin PG
    Prikl Biokhim Mikrobiol; 2004; 40(3):323-31. PubMed ID: 15283336
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mg(2+)-Dependent Control of the Spatial Arrangement of Rhodococcus erythropolis PR4 Cells in Aqueous-Alkane Two Phase Culture Containing n-Dodecane.
    Takihara H; Akase Y; Sunairi M; Iwabuchi N
    Microbes Environ; 2016 Jun; 31(2):178-81. PubMed ID: 27180641
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of surfactants on the biofilm of Rhodococcus erythropolis, a potent degrader of aromatic pollutants.
    Schreiberová O; Hedbávná P; Cejková A; Jirků V; Masák J
    N Biotechnol; 2012 Nov; 30(1):62-8. PubMed ID: 22569140
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metabolic responses of Rhodococcus erythropolis PR4 grown on diesel oil and various hydrocarbons.
    Laczi K; Kis Á; Horváth B; Maróti G; Hegedüs B; Perei K; Rákhely G
    Appl Microbiol Biotechnol; 2015 Nov; 99(22):9745-59. PubMed ID: 26346267
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Abundance of macroalgal organic matter in biofilms: evidence from n-alkane biomarkers.
    Garg A; Bhosle N
    Biofouling; 2004 Jun; 20(3):155-65. PubMed ID: 15545065
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.