These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. A general multi-strain model with environmental transmission: invasion conditions for the disease-free and endemic states. Breban R; Drake JM; Rohani P J Theor Biol; 2010 Jun; 264(3):729-36. PubMed ID: 20211630 [TBL] [Abstract][Full Text] [Related]
4. Non-linear incidence and stability of infectious disease models. Korobeinikov A; Maini PK Math Med Biol; 2005 Jun; 22(2):113-28. PubMed ID: 15778334 [TBL] [Abstract][Full Text] [Related]
5. Global properties of SIR and SEIR epidemic models with multiple parallel infectious stages. Korobeinikov A Bull Math Biol; 2009 Jan; 71(1):75-83. PubMed ID: 18769976 [TBL] [Abstract][Full Text] [Related]
6. Global asymptotic properties of staged models with multiple progression pathways for infectious diseases. Melnik AV; Korobeinikov A Math Biosci Eng; 2011 Oct; 8(4):1019-34. PubMed ID: 21936598 [TBL] [Abstract][Full Text] [Related]
7. Some elementary properties of SIR networks or, can i get sick because you got vaccinated? Floyd W; Kay L; Shapiro M Bull Math Biol; 2008 Apr; 70(3):713-27. PubMed ID: 18060461 [TBL] [Abstract][Full Text] [Related]
8. Contact rate calculation for a basic epidemic model. Rhodes CJ; Anderson RM Math Biosci; 2008 Nov; 216(1):56-62. PubMed ID: 18783724 [TBL] [Abstract][Full Text] [Related]
9. Tracking the dynamics of pathogen interactions: modeling ecological and immune-mediated processes in a two-pathogen single-host system. Vasco DA; Wearing HJ; Rohani P J Theor Biol; 2007 Mar; 245(1):9-25. PubMed ID: 17078973 [TBL] [Abstract][Full Text] [Related]
10. Global properties of infectious disease models with nonlinear incidence. Korobeinikov A Bull Math Biol; 2007 Aug; 69(6):1871-86. PubMed ID: 17443392 [TBL] [Abstract][Full Text] [Related]
11. An SEIS epidemic model with transport-related infection. Wan H; Cui JA J Theor Biol; 2007 Aug; 247(3):507-24. PubMed ID: 17481666 [TBL] [Abstract][Full Text] [Related]
12. Predation can increase the prevalence of infectious disease. Holt RD; Roy M Am Nat; 2007 May; 169(5):690-9. PubMed ID: 17427139 [TBL] [Abstract][Full Text] [Related]
13. Optimal treatment of an SIR epidemic model with time delay. Zaman G; Kang YH; Jung IH Biosystems; 2009 Oct; 98(1):43-50. PubMed ID: 19464340 [TBL] [Abstract][Full Text] [Related]
14. Infection, reinfection, and vaccination under suboptimal immune protection: epidemiological perspectives. Gomes MG; White LJ; Medley GF J Theor Biol; 2004 Jun; 228(4):539-49. PubMed ID: 15178201 [TBL] [Abstract][Full Text] [Related]
15. Threshold dynamics in a time-delayed epidemic model with dispersal. White MC; Zhao XQ Math Biosci; 2009 Apr; 218(2):121-9. PubMed ID: 19563742 [TBL] [Abstract][Full Text] [Related]
16. A multi-species epidemic model with spatial dynamics. Arino J; Davis JR; Hartley D; Jordan R; Miller JM; van den Driessche P Math Med Biol; 2005 Jun; 22(2):129-42. PubMed ID: 15778332 [TBL] [Abstract][Full Text] [Related]
17. Spreading disease with transport-related infection. Cui J; Takeuchi Y; Saito Y J Theor Biol; 2006 Apr; 239(3):376-90. PubMed ID: 16219328 [TBL] [Abstract][Full Text] [Related]
18. Dynamics of an SIS reaction-diffusion epidemic model for disease transmission. Huang W; Han M; Liu K Math Biosci Eng; 2010 Jan; 7(1):51-66. PubMed ID: 20104948 [TBL] [Abstract][Full Text] [Related]
19. Spatiotemporal dynamics of epidemics: synchrony in metapopulation models. Lloyd AL; Jansen VA Math Biosci; 2004; 188():1-16. PubMed ID: 14766090 [TBL] [Abstract][Full Text] [Related]
20. An epidemic model in a patchy environment. Wang W; Zhao XQ Math Biosci; 2004 Jul; 190(1):97-112. PubMed ID: 15172805 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]