These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
240 related articles for article (PubMed ID: 19097690)
1. Adsorption of Ni(II) on oxidized multi-walled carbon nanotubes: effect of contact time, pH, foreign ions and PAA. Yang S; Li J; Shao D; Hu J; Wang X J Hazard Mater; 2009 Jul; 166(1):109-16. PubMed ID: 19097690 [TBL] [Abstract][Full Text] [Related]
2. Removal of nickel ions from water by multi-walled carbon nanotubes. Kandah MI; Meunier JL J Hazard Mater; 2007 Jul; 146(1-2):283-8. PubMed ID: 17196328 [TBL] [Abstract][Full Text] [Related]
3. Removal of Pb(II) from aqueous solution by oxidized multiwalled carbon nanotubes. Xu D; Tan X; Chen C; Wang X J Hazard Mater; 2008 Jun; 154(1-3):407-16. PubMed ID: 18053642 [TBL] [Abstract][Full Text] [Related]
4. Adsorption behavior of multiwall carbon nanotube/iron oxide magnetic composites for Ni(II) and Sr(II). Chen C; Hu J; Shao D; Li J; Wang X J Hazard Mater; 2009 May; 164(2-3):923-8. PubMed ID: 18842337 [TBL] [Abstract][Full Text] [Related]
5. Effective removal of Ni(II) from aqueous solutions by modification of nano particles of clinoptilolite with dimethylglyoxime. Nezamzadeh-Ejhieh A; Kabiri-Samani M J Hazard Mater; 2013 Sep; 260():339-49. PubMed ID: 23792926 [TBL] [Abstract][Full Text] [Related]
6. Multi-walled carbon nanotubes as adsorbents for the removal of parts per billion levels of hexavalent chromium from aqueous solution. Pillay K; Cukrowska EM; Coville NJ J Hazard Mater; 2009 Jul; 166(2-3):1067-75. PubMed ID: 19157694 [TBL] [Abstract][Full Text] [Related]
7. Investigation of the sequestration mechanisms of Cd(II) and 1-naphthol on discharged multi-walled carbon nanotubes in aqueous environment. Yang S; Guo Z; Sheng G; Wang X Sci Total Environ; 2012 Mar; 420():214-21. PubMed ID: 22330423 [TBL] [Abstract][Full Text] [Related]
8. Adsorption of mercury from water by modified multi-walled carbon nanotubes: adsorption behaviour and interference resistance by coexisting anions. Chen PH; Hsu CF; Tsai DD; Lu YM; Huang WJ Environ Technol; 2014 Aug; 35(13-16):1935-44. PubMed ID: 24956787 [TBL] [Abstract][Full Text] [Related]
9. Sorption of Ni(II) ions from aqueous solution by Lewatit cation-exchange resin. Dizge N; Keskinler B; Barlas H J Hazard Mater; 2009 Aug; 167(1-3):915-26. PubMed ID: 19231079 [TBL] [Abstract][Full Text] [Related]
10. Investigation of factors affecting adsorption of transition metals on oxidized carbon nanotubes. Gao Z; Bandosz TJ; Zhao Z; Han M; Qiu J J Hazard Mater; 2009 Aug; 167(1-3):357-65. PubMed ID: 19264402 [TBL] [Abstract][Full Text] [Related]
11. Removal of mercury from water by multi-walled carbon nanotubes. Tawabini B; Al-Khaldi S; Atieh M; Khaled M Water Sci Technol; 2010; 61(3):591-8. PubMed ID: 20150694 [TBL] [Abstract][Full Text] [Related]
12. Mutual effects of Pb(II) and humic acid adsorption on multiwalled carbon nanotubes/polyacrylamide composites from aqueous solutions. Yang S; Hu J; Chen C; Shao D; Wang X Environ Sci Technol; 2011 Apr; 45(8):3621-7. PubMed ID: 21395259 [TBL] [Abstract][Full Text] [Related]
13. Removing lead ions from aqueous solutions by the thiosemicarbazide grafted multi-walled carbon nanotubes. Zhou Y; Yu J; Jiang X Water Sci Technol; 2017 Jul; 76(2):302-310. PubMed ID: 28726697 [TBL] [Abstract][Full Text] [Related]
14. Sequestration of nickel from aqueous solution onto activated carbon prepared from Parthenium hysterophorus L. Lata H; Garg VK; Gupta RK J Hazard Mater; 2008 Sep; 157(2-3):503-9. PubMed ID: 18294768 [TBL] [Abstract][Full Text] [Related]
15. Phosphine functionalised multiwalled carbon nanotubes: a new adsorbent for the removal of nickel from aqueous solution. Adolph MA; Xavier YM; Kriveshini P; Rui K J Environ Sci (China); 2012; 24(6):1133-41. PubMed ID: 23505882 [TBL] [Abstract][Full Text] [Related]
16. Removal of tetracycline antibiotic from contaminated water media by multi-walled carbon nanotubes: operational variables, kinetics, and equilibrium studies. Babaei AA; Lima EC; Takdastan A; Alavi N; Goudarzi G; Vosoughi M; Hassani G; Shirmardi M Water Sci Technol; 2016; 74(5):1202-16. PubMed ID: 27642840 [TBL] [Abstract][Full Text] [Related]
17. Biosorption of Ni(II) from aqueous solutions by Litchi chinensis seeds. Flores-Garnica JG; Morales-Barrera L; Pineda-Camacho G; Cristiani-Urbina E Bioresour Technol; 2013 May; 136():635-43. PubMed ID: 23567741 [TBL] [Abstract][Full Text] [Related]
18. Biosorption potentials of a novel green biosorbent Saccharum bengalense containing cellulose as carbohydrate polymer for removal of Ni (II) ions from aqueous solutions. Din MI; Mirza ML Int J Biol Macromol; 2013 Mar; 54():99-108. PubMed ID: 23219872 [TBL] [Abstract][Full Text] [Related]
19. Adsorptive removal of nickel and lead ions from aqueous solutions using phosphorylated tamarind nut carbon. Suganthi N; Srinivasan K J Environ Sci Eng; 2011 Apr; 53(2):163-74. PubMed ID: 23033699 [TBL] [Abstract][Full Text] [Related]
20. Enhanced adsorption of As(V) and Mn(VII) from industrial wastewater using multi-walled carbon nanotubes and carboxylated multi-walled carbon nanotubes. Egbosiuba TC; Abdulkareem AS; Kovo AS; Afolabi EA; Tijani JO; Roos WD Chemosphere; 2020 Sep; 254():126780. PubMed ID: 32353809 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]