These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

269 related articles for article (PubMed ID: 19097694)

  • 21. Polymer-oligopeptide composite coating for selective detection of explosives in water.
    Cerruti M; Jaworski J; Raorane D; Zueger C; Varadarajan J; Carraro C; Lee SW; Maboudian R; Majumdar A
    Anal Chem; 2009 Jun; 81(11):4192-9. PubMed ID: 19476386
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Simple correlation for predicting detonation velocity of ideal and non-ideal explosives.
    Keshavarz MH
    J Hazard Mater; 2009 Jul; 166(2-3):762-9. PubMed ID: 19135789
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Estimating the TNT equivalence of a 15-ton single base powder explosion through damaged building profiles analyses.
    Mendonça-Filho LG; Bastos-Netto D; Guirardello R
    J Hazard Mater; 2008 Oct; 158(2-3):599-604. PubMed ID: 18353550
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A theoretical investigation on the structures, densities, detonation properties and pyrolysis mechanism of the nitro derivatives of toluenes.
    Wang G; Gong X; Liu Y; Du H; Xu X; Xiao H
    J Hazard Mater; 2010 May; 177(1-3):703-10. PubMed ID: 20064687
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The natural sampling of airborne trace signals from explosives concealed upon the human body.
    Gowadia HA; Settles GS
    J Forensic Sci; 2001 Nov; 46(6):1324-31. PubMed ID: 11714142
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Simple determination of performance of explosives without using any experimental data.
    Keshavarz MH
    J Hazard Mater; 2005 Mar; 119(1-3):25-9. PubMed ID: 15752845
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Reliable prediction of electric spark sensitivity of nitramines: a general correlation with detonation pressure.
    Keshavarz MH; Pouretedal HR; Semnani A
    J Hazard Mater; 2009 Aug; 167(1-3):461-6. PubMed ID: 19188021
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effective elution of RDX and TNT from particles of Comp B in surface soil.
    Furey JS; Fredrickson HL; Richmond MJ; Michel M
    Chemosphere; 2008 Jan; 70(7):1175-81. PubMed ID: 17910970
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Characteristic overpressure-impulse-distance curves for vapour cloud explosions using the TNO Multi-Energy model.
    Díaz Alonso F; González Ferradás E; Sánchez Pérez JF; Miñana Aznar A; Ruiz Gimeno J; Martínez Alonso J
    J Hazard Mater; 2006 Sep; 137(2):734-41. PubMed ID: 16704903
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Minimisation of the explosion shock wave load onto the occupants inside the vehicle during trinitrotoluene charge blast.
    Krzystała E; Mężyk A; Kciuk S
    Int J Inj Contr Saf Promot; 2016; 23(2):170-8. PubMed ID: 25307173
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Experimental study on the methane explosion suppression by ultra-fine water mist containing bacteria under degradation for five times.
    Yang K; Wang L; Ji H; Xing Z; Jiang J
    Environ Sci Pollut Res Int; 2024 May; 31(25):37835-37847. PubMed ID: 38789706
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Accident sequence analysis for sites producing and storing explosives.
    Papazoglou IA; Aneziris O; Konstandinidou M; Giakoumatos I
    Accid Anal Prev; 2009 Nov; 41(6):1145-54. PubMed ID: 19819362
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Study on Methane Explosion Suppression in Diagonal Pipe Networks Using a Fine Water Mist Containing KCl and an Inert Gas.
    Fengxiao W; Jinzhang J; Xiuyuan T
    ACS Omega; 2022 Sep; 7(37):32959-32969. PubMed ID: 36157747
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Computer simulation for prediction of performance and thermodynamic parameters of high energy materials.
    Muthurajan H; Sivabalan R; Talawar MB; Asthana SN
    J Hazard Mater; 2004 Aug; 112(1-2):17-33. PubMed ID: 15225927
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Mechanism of thermal unimolecular decomposition of TNT (2,4,6-trinitrotoluene): a DFT study.
    Cohen R; Zeiri Y; Wurzberg E; Kosloff R
    J Phys Chem A; 2007 Nov; 111(43):11074-83. PubMed ID: 17915836
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Detonation temperature of high explosives from structural parameters.
    Keshavarz MH
    J Hazard Mater; 2006 Oct; 137(3):1303-8. PubMed ID: 16806689
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Quantitative research on gas explosion inhibition by water mist.
    Song Y; Zhang Q
    J Hazard Mater; 2019 Feb; 363():16-25. PubMed ID: 30300774
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Ultrasensitive detection of TNT in soil, water, using enhanced electrogenerated chemiluminescence.
    Pittman TL; Thomson B; Miao W
    Anal Chim Acta; 2009 Jan; 632(2):197-202. PubMed ID: 19110093
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A simple approach for determining detonation velocity of high explosive at any loading density.
    Keshavarz MH
    J Hazard Mater; 2005 May; 121(1-3):31-6. PubMed ID: 15885403
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Accumulation of explosives in hair--part II: factors affecting sorption.
    Oxley JC; Smith JL; Kirschenbaum LJ; Marimganti S
    J Forensic Sci; 2007 Nov; 52(6):1291-6. PubMed ID: 18093063
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.