BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 19098240)

  • 1. Modeling methane production from beef cattle using linear and nonlinear approaches.
    Ellis JL; Kebreab E; Odongo NE; Beauchemin K; McGinn S; Nkrumah JD; Moore SS; Christopherson R; Murdoch GK; McBride BW; Okine EK; France J
    J Anim Sci; 2009 Apr; 87(4):1334-45. PubMed ID: 19098240
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prediction of methane production from dairy and beef cattle.
    Ellis JL; Kebreab E; Odongo NE; McBride BW; Okine EK; France J
    J Dairy Sci; 2007 Jul; 90(7):3456-66. PubMed ID: 17582129
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Model for estimating enteric methane emissions from United States dairy and feedlot cattle.
    Kebreab E; Johnson KA; Archibeque SL; Pape D; Wirth T
    J Anim Sci; 2008 Oct; 86(10):2738-48. PubMed ID: 18539822
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An evaluation of the accuracy and precision of methane prediction equations for beef cattle fed high-forage and high-grain diets.
    Escobar-Bahamondes P; Oba M; Beauchemin KA
    Animal; 2017 Jan; 11(1):68-77. PubMed ID: 27364619
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The prediction of methane production of Holstein cows by several equations.
    Wilkerson VA; Casper DP; Mertens DR
    J Dairy Sci; 1995 Nov; 78(11):2402-14. PubMed ID: 8747332
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prediction of portal and hepatic blood flow from intake level data in cattle.
    Ellis JL; Reynolds CK; Crompton LA; Hanigan MD; Bannink A; France J; Dijkstra J
    J Dairy Sci; 2016 Nov; 99(11):9238-9253. PubMed ID: 27614843
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cattle selected for lower residual feed intake have reduced daily methane production.
    Hegarty RS; Goopy JP; Herd RM; McCorkell B
    J Anim Sci; 2007 Jun; 85(6):1479-86. PubMed ID: 17296777
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of sward dry matter digestibility on methane production, ruminal fermentation, and microbial populations of zero-grazed beef cattle.
    Hart KJ; Martin PG; Foley PA; Kenny DA; Boland TM
    J Anim Sci; 2009 Oct; 87(10):3342-50. PubMed ID: 19542500
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Short communication: Prediction of intake in dairy cows under tropical conditions.
    Souza MC; Oliveira AS; Araújo CV; Brito AF; Teixeira RM; Moares EH; Moura DC
    J Dairy Sci; 2014; 97(6):3845-54. PubMed ID: 24731647
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of equations to predict dry matter intake of dairy heifers.
    Hoffman PC; Weigel KA; Wernberg RM
    J Dairy Sci; 2008 Sep; 91(9):3699-709. PubMed ID: 18765629
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Methane emissions from beef and dairy cattle: quantifying the effect of physiological stage and diet characteristics.
    Ricci P; Rooke JA; Nevison I; Waterhouse A
    J Anim Sci; 2013 Nov; 91(11):5379-89. PubMed ID: 24174549
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prediction of nitrogen excretion in feces and urine of beef cattle offered diets containing grass silage.
    Yan T; Frost JP; Keady TW; Agnew RE; Mayne CS
    J Anim Sci; 2007 Aug; 85(8):1982-9. PubMed ID: 17504962
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Predicting metabolizable energy from digestible energy for growing and finishing beef cattle and relationships to the prediction of methane.
    Hales KE; Coppin CA; Smith ZK; McDaniel ZS; Tedeschi LO; Cole NA; Galyean ML
    J Anim Sci; 2022 Mar; 100(3):. PubMed ID: 35034122
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A mathematical approach to predicting biological values from ruminal pH measurements.
    AlZahal O; Kebreab E; France J; McBride BW
    J Dairy Sci; 2007 Aug; 90(8):3777-85. PubMed ID: 17638989
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development and evaluation of feeding-period average dry matter intake prediction equations from a commercial feedlot database.
    McMeniman JP; Tedeschi LO; Defoor PJ; Galyean ML
    J Anim Sci; 2010 Sep; 88(9):3009-17. PubMed ID: 20453082
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Factors affecting methane production and mitigation in ruminants.
    Shibata M; Terada F
    Anim Sci J; 2010 Feb; 81(1):2-10. PubMed ID: 20163666
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Predicting enteric methane production from cattle in the tropics.
    Ribeiro RS; Rodrigues JPP; Maurício RM; Borges ALCC; Reis E Silva R; Berchielli TT; Valadares Filho SC; Machado FS; Campos MM; Ferreira AL; Guimarães Júnior R; Azevêdo JAG; Santos RD; Tomich TR; Pereira LGR
    Animal; 2020 Sep; 14(S3):s438-s452. PubMed ID: 32778195
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Models for predicting enteric methane emissions from dairy cows in North America, Europe, and Australia and New Zealand.
    Appuhamy JA; France J; Kebreab E
    Glob Chang Biol; 2016 Sep; 22(9):3039-56. PubMed ID: 27148862
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prediction of enteric methane emissions from sheep offered fresh perennial ryegrass () using data measured in indirect open-circuit respiration chambers.
    Zhao YG; O'Connell NE; Yan T
    J Anim Sci; 2016 Jun; 94(6):2425-35. PubMed ID: 27285918
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genetic parameters for predicted methane production and potential for reducing enteric emissions through genomic selection.
    Haas Yd; Windig JJ; Calus MP; Dijkstra J; Haan Md; Bannink A; Veerkamp RF
    J Dairy Sci; 2011 Dec; 94(12):6122-34. PubMed ID: 22118100
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.