These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 19098457)

  • 1. The biochemistry of RNA metabolism studied in situ.
    Nickerson JA
    RNA Biol; 2009; 6(1):25-30. PubMed ID: 19098457
    [TBL] [Abstract][Full Text] [Related]  

  • 2. FRAP and FRET methods to study nuclear receptors in living cells.
    van Royen ME; Dinant C; Farla P; Trapman J; Houtsmuller AB
    Methods Mol Biol; 2009; 505():69-96. PubMed ID: 19117140
    [TBL] [Abstract][Full Text] [Related]  

  • 3. FRET and FRAP imaging: approaches to characterise tau and stathmin interactions with microtubules in cells.
    Nouar R; Devred F; Breuzard G; Peyrot V
    Biol Cell; 2013 Apr; 105(4):149-61. PubMed ID: 23312015
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A reaction-diffusion model to study RNA motion by quantitative fluorescence recovery after photobleaching.
    Braga J; McNally JG; Carmo-Fonseca M
    Biophys J; 2007 Apr; 92(8):2694-703. PubMed ID: 17259280
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Measurement of dynamic protein binding to chromatin in vivo, using photobleaching microscopy.
    Phair RD; Gorski SA; Misteli T
    Methods Enzymol; 2004; 375():393-414. PubMed ID: 14870680
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recent applications of fluorescence recovery after photobleaching (FRAP) to membrane bio-macromolecules.
    Rayan G; Guet JE; Taulier N; Pincet F; Urbach W
    Sensors (Basel); 2010; 10(6):5927-48. PubMed ID: 22219695
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chapter 7: Total internal reflection fluorescence microscopy.
    Axelrod D
    Methods Cell Biol; 2008; 89():169-221. PubMed ID: 19118676
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optical analysis of the HIF-1 complex in living cells by FRET and FRAP.
    Wotzlaw C; Otto T; Berchner-Pfannschmidt U; Metzen E; Acker H; Fandrey J
    FASEB J; 2007 Mar; 21(3):700-7. PubMed ID: 17197389
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dual-channel photobleaching FRET microscopy for improved resolution of protein association states in living cells.
    Clayton AH; Klonis N; Cody SH; Nice EC
    Eur Biophys J; 2005 Feb; 34(1):82-90. PubMed ID: 15232659
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Preparing sample chambers for single-molecule FRET.
    Joo C; Ha T
    Cold Spring Harb Protoc; 2012 Oct; 2012(10):1104-8. PubMed ID: 23028078
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Imaging and identifying impurities in single-molecule FRET studies.
    Joo C; Ha T
    Cold Spring Harb Protoc; 2012 Oct; 2012(10):1109-12. PubMed ID: 23028079
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Force meets chemistry: analysis of mechanochemical conversion in focal adhesions using fluorescence recovery after photobleaching.
    Lele TP; Thodeti CK; Ingber DE
    J Cell Biochem; 2006 Apr; 97(6):1175-83. PubMed ID: 16408278
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Visualization of molecular activities inside living cells with fluorescent labels.
    Bunt G; Wouters FS
    Int Rev Cytol; 2004; 237():205-77. PubMed ID: 15380669
    [TBL] [Abstract][Full Text] [Related]  

  • 14. FLIM-FRET and FRAP reveal association of influenza virus haemagglutinin with membrane rafts.
    Engel S; Scolari S; Thaa B; Krebs N; Korte T; Herrmann A; Veit M
    Biochem J; 2010 Jan; 425(3):567-73. PubMed ID: 19888915
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantitative FRET studies and integrative modeling unravel the structure and dynamics of biomolecular systems.
    Dimura M; Peulen TO; Hanke CA; Prakash A; Gohlke H; Seidel CA
    Curr Opin Struct Biol; 2016 Oct; 40():163-185. PubMed ID: 27939973
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of Protein Kinetics Using Fluorescence Recovery After Photobleaching (FRAP).
    Giakoumakis NN; Rapsomaniki MA; Lygerou Z
    Methods Mol Biol; 2017; 1563():243-267. PubMed ID: 28324613
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Antisense molecular beacon strategy for in situ visualization of snRNA and fibrillarin protein interaction in Giardia lamblia.
    Ganguly S; Ghosh S; Chattopadhyay D; Das P
    RNA Biol; 2004 May; 1(1):48-53. PubMed ID: 17194934
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Single- and two-photon fluorescence recovery after photobleaching.
    Sullivan KD; Majewska AK; Brown EB
    Cold Spring Harb Protoc; 2015 Jan; 2015(1):pdb.top083519. PubMed ID: 25561627
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular viewing of actin polymerizing actions and beyond: combination analysis of single-molecule speckle microscopy with modeling, FRAP and s-FDAP (sequential fluorescence decay after photoactivation).
    Watanabe N; Yamashiro S; Vavylonis D; Kiuchi T
    Dev Growth Differ; 2013 May; 55(4):508-14. PubMed ID: 23621590
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantitative imaging of protein interactions in the cell nucleus.
    Voss TC; Demarco IA; Day RN
    Biotechniques; 2005 Mar; 38(3):413-24. PubMed ID: 15786808
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.