BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 19099081)

  • 1. Enzyme-catalyzed synthesis of isosteric phosphono-analogues of sugar nucleotides.
    Beaton SA; Huestis MP; Sadeghi-Khomami A; Thomas NR; Jakeman DL
    Chem Commun (Camb); 2009 Jan; (2):238-40. PubMed ID: 19099081
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enzyme-catalyzed synthesis of furanosyl nucleotides.
    Timmons SC; Hui JP; Pearson JL; Peltier P; Daniellou R; Nugier-Chauvin C; Soo EC; Syvitski RT; Ferrières V; Jakeman DL
    Org Lett; 2008 Jan; 10(2):161-3. PubMed ID: 18092787
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Unusually broad substrate tolerance of a heat-stable archaeal sugar nucleotidyltransferase for the synthesis of sugar nucleotides.
    Mizanur RM; Zea CJ; Pohl NL
    J Am Chem Soc; 2004 Dec; 126(49):15993-8. PubMed ID: 15584733
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phosphomannose isomerase/GDP-mannose pyrophosphorylase from Pyrococcus furiosus: a thermostable biocatalyst for the synthesis of guanidinediphosphate-activated and mannose-containing sugar nucleotides.
    Mizanur RM; Pohl NL
    Org Biomol Chem; 2009 May; 7(10):2135-9. PubMed ID: 19421452
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lipophilic sugar nucleotide synthesis by structure-based design of nucleotidylyltransferase substrates.
    Huestis MP; Aish GA; Hui JP; Soo EC; Jakeman DL
    Org Biomol Chem; 2008 Feb; 6(3):477-84. PubMed ID: 18219417
    [TBL] [Abstract][Full Text] [Related]  

  • 6. One-step synthesis of labeled sugar nucleotides for protein O-GlcNAc modification studies by chemical function analysis of an archaeal protein.
    Mizanur RM; Jaipuri FA; Pohl NL
    J Am Chem Soc; 2005 Jan; 127(3):836-7. PubMed ID: 15656612
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exploiting nucleotidylyltransferases to prepare sugar nucleotides.
    Timmons SC; Mosher RH; Knowles SA; Jakeman DL
    Org Lett; 2007 Mar; 9(5):857-60. PubMed ID: 17286408
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stereospecific synthesis of sugar-1-phosphates and their conversion to sugar nucleotides.
    Timmons SC; Jakeman DL
    Carbohydr Res; 2008 Apr; 343(5):865-74. PubMed ID: 18299123
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recent advances in the enzymatic synthesis of sugar-nucleotides using nucleotidylyltransferases and glycosyltransferases.
    Ahmadipour S; Beswick L; Miller GJ
    Carbohydr Res; 2018 Nov; 469():38-47. PubMed ID: 30265902
    [No Abstract]   [Full Text] [Related]  

  • 10. Thiophosphate and thiophosphonate analogues of glucose-1-phosphate: synthesis and enzymatic activity with a thymidylyltransferase.
    Loranger MW; Beaton SA; Lines KL; Jakeman DL
    Carbohydr Res; 2013 Sep; 379():43-50. PubMed ID: 23872276
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A chemoenzymatic route to synthesize unnatural sugar nucleotides using a novel N-acetylglucosamine-1-phosphate pyrophosphorylase from Camphylobacter jejuni NCTC 11168.
    Fang J; Xue M; Gu G; Liu XW; Wang PG
    Bioorg Med Chem Lett; 2013 Aug; 23(15):4303-7. PubMed ID: 23800684
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The search for a potentially prebiotic synthesis of nucleotides via arabinose-3-phosphate and its cyanamide derivative.
    Anastasi C; Buchet FF; Crowe MA; Helliwell M; Raftery J; Sutherland JD
    Chemistry; 2008; 14(8):2375-88. PubMed ID: 18203227
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhancing the latent nucleotide triphosphate flexibility of the glucose-1-phosphate thymidylyltransferase RmlA.
    Moretti R; Thorson JS
    J Biol Chem; 2007 Jun; 282(23):16942-7. PubMed ID: 17434871
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Surprising bacterial nucleotidyltransferase selectivity in the conversion of carbaglucose-1-phosphate.
    Ko KS; Zea CJ; Pohl NL
    J Am Chem Soc; 2004 Oct; 126(41):13188-9. PubMed ID: 15479049
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis of cytidine ribonucleotides by stepwise assembly of the heterocycle on a sugar phosphate.
    Ingar AA; Luke RW; Hayter BR; Sutherland JD
    Chembiochem; 2003 Jun; 4(6):504-7. PubMed ID: 12794860
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kinetic evaluation of glucose 1-phosphate analogues with a thymidylyltransferase using a continuous coupled enzyme assay.
    Forget SM; Jee A; Smithen DA; Jagdhane R; Anjum S; Beaton SA; Palmer DR; Syvitski RT; Jakeman DL
    Org Biomol Chem; 2015 Jan; 13(3):866-75. PubMed ID: 25408103
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Magic spot nucleotides: tunable target-specific chemoenzymatic synthesis.
    Haas TM; Ebensperger P; Eisenbeis VB; Nopper C; Dürr T; Jork N; Steck N; Jessen-Trefzer C; Jessen HJ
    Chem Commun (Camb); 2019 May; 55(37):5339-5342. PubMed ID: 30973558
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Competitive inhibitors of type B ribose 5-phosphate isomerases: design, synthesis and kinetic evaluation of new D-allose and D-allulose 6-phosphate derivatives.
    Mariano S; Roos AK; Mowbray SL; Salmon L
    Carbohydr Res; 2009 May; 344(7):869-80. PubMed ID: 19328460
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthesis of α-Deoxymono and Difluorohexopyranosyl 1-Phosphates and Kinetic Evaluation with Thymidylyl- and Guanidylyltransferases.
    Zhu JS; McCormick NE; Timmons SC; Jakeman DL
    J Org Chem; 2016 Oct; 81(19):8816-8825. PubMed ID: 27576508
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The incorporation of AMP into oligoribonucleotides by an enzyme from rat liver.
    Klemperer HG
    Biochem Biophys Res Commun; 1964 Mar; 15(3):269-72. PubMed ID: 5835388
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.