BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 19099285)

  • 1. Genetic analysis of nuclear-cytoplasmic incompatibility in pea associated with cytoplasm of an accession of wild subspecies Pisum sativum subsp. elatius (Bieb.) Schmahl.
    Bogdanova VS; Galieva ER; Kosterin OE
    Theor Appl Genet; 2009 Feb; 118(4):801-9. PubMed ID: 19099285
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inheritance and genetic mapping of two nuclear genes involved in nuclear-cytoplasmic incompatibility in peas (Pisum sativum L.).
    Bogdanova VS; Galieva ER; Yadrikhinskiy AK; Kosterin OE
    Theor Appl Genet; 2012 May; 124(8):1503-12. PubMed ID: 22318398
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inheritance of organelle DNA markers in a pea cross associated with nuclear-cytoplasmic incompatibility.
    Bogdanova VS
    Theor Appl Genet; 2007 Jan; 114(2):333-9. PubMed ID: 17080258
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Wild peas vary in their cross-compatibility with cultivated pea (Pisum sativum subsp. sativum L.) depending on alleles of a nuclear-cytoplasmic incompatibility locus.
    Bogdanova VS; Kosterin OE; Yadrikhinskiy AK
    Theor Appl Genet; 2014 May; 127(5):1163-72. PubMed ID: 24619163
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Meiotic abnormalities as expression of nuclear-cytoplasmic incompatibility in crosses of Pisum sativum subspecies].
    Bogdanova VS; Galieva ER
    Genetika; 2009 May; 45(5):711-6. PubMed ID: 19534431
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nuclear-cytoplasm conflict in crosses of pea subspecies is controlled by alleles of a nuclear gene on linkage group III.
    Yadrikhinskiy AK; Bogdanova VS
    Dokl Biol Sci; 2011; 441():396-9. PubMed ID: 22227690
    [No Abstract]   [Full Text] [Related]  

  • 7. Allelic Diversity of Acetyl Coenzyme A Carboxylase
    Nováková E; Zablatzká L; Brus J; Nesrstová V; Hanáček P; Kalendar R; Cvrčková F; Majeský Ľ; Smýkal P
    Int J Mol Sci; 2019 Apr; 20(7):. PubMed ID: 30974846
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Discordant evolution of organellar genomes in peas (Pisum L.).
    Bogdanova VS; Shatskaya NV; Mglinets AV; Kosterin OE; Vasiliev GV
    Mol Phylogenet Evol; 2021 Jul; 160():107136. PubMed ID: 33684529
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A CAPS marker set for mapping in linkage group III of pea (Pisum sativum L.).
    Konovalov F; Toshchakova E; Gostimsky S
    Cell Mol Biol Lett; 2005; 10(1):163-71. PubMed ID: 15809687
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nuclear-cytoplasmic conflict in pea (Pisum sativum L.) is associated with nuclear and plastidic candidate genes encoding acetyl-CoA carboxylase subunits.
    Bogdanova VS; Zaytseva OO; Mglinets AV; Shatskaya NV; Kosterin OE; Vasiliev GV
    PLoS One; 2015; 10(3):e0119835. PubMed ID: 25789472
    [TBL] [Abstract][Full Text] [Related]  

  • 11. First Report of Natural Infection of Pisum sativum subsp. elatius by Mycosphaerella pinodes in Bulgaria.
    Kaiser WJ; Muehlbauer FJ; Hannan RM; Mihov M
    Plant Dis; 1998 Jul; 82(7):830. PubMed ID: 30856960
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Assessment of genetic diversity in Ethiopian field pea (Pisum sativum L.) accessions with newly developed EST-SSR markers.
    Teshome A; Bryngelsson T; Dagne K; Geleta M
    BMC Genet; 2015 Aug; 16():102. PubMed ID: 26286720
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cryptic divergences in the genus Pisum L. (peas), as revealed by phylogenetic analysis of plastid genomes.
    Bogdanova VS; Mglinets AV; Shatskaya NV; Kosterin OE; Solovyev VI; Vasiliev GV
    Mol Phylogenet Evol; 2018 Dec; 129():280-290. PubMed ID: 30195476
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of RAPD markers and their use for molecular mapping in pea (Pisum sativum L.).
    Cheghamirza K; Koveza O; Konovalov F; Gostimsky S
    Cell Mol Biol Lett; 2002; 7(2B):649-55. PubMed ID: 12378223
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Candidate genes for quantitative resistance to Mycosphaerella pinodes in pea (Pisum sativum L.).
    Prioul-Gervais S; Deniot G; Receveur EM; Frankewitz A; Fourmann M; Rameau C; Pilet-Nayel ML; Baranger A
    Theor Appl Genet; 2007 Apr; 114(6):971-84. PubMed ID: 17265025
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Anatomy and Histochemistry of Seed Coat Development of Wild (
    Zablatzká L; Balarynová J; Klčová B; Kopecký P; Smýkal P
    Int J Mol Sci; 2021 Apr; 22(9):. PubMed ID: 33925728
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genetic Diversity and Population Structure of a Wide
    Rispail N; Wohor OZ; Osuna-Caballero S; Barilli E; Rubiales D
    Int J Mol Sci; 2023 Jan; 24(3):. PubMed ID: 36768792
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Identification and mapping of chi115 gene and DNA markers linked to it in pea (Pisum sativum L.)].
    Chegamirza K; Koveza OV; Konovalov FA; Gostimskiĭ SA
    Genetika; 2004 Jul; 40(7):909-15. PubMed ID: 15458201
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genetic analysis of pod dehiscence in pea (Pisum sativum L.).
    Weeden NF; Brauner S; Przyborowski JA
    Cell Mol Biol Lett; 2002; 7(2B):657-63. PubMed ID: 12378224
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Fastest and Most Reliable Identification of True Hybrids in the Genus
    Sari H; Eker T; Sari D; Aksoy M; Bakır M; Dogdu V; Toker C; Canci H
    Life (Basel); 2023 Nov; 13(11):. PubMed ID: 38004362
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.