These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

50 related articles for article (PubMed ID: 19099463)

  • 1. Inherently superoleophobic nanocomposite coatings by spray atomization.
    Steele A; Bayer I; Loth E
    Nano Lett; 2009 Jan; 9(1):501-5. PubMed ID: 19099463
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Harnessing localized ridges for high-aspect-ratio hierarchical patterns with dynamic tunability and multifunctionality.
    Cao C; Chan HF; Zang J; Leong KW; Zhao X
    Adv Mater; 2014 Mar; 26(11):1763-70. PubMed ID: 24339233
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nanocrystal synthesis in an amphibious bath: spontaneous generation of hydrophilic and hydrophobic surface coatings.
    Smith AM; Nie S
    Angew Chem Int Ed Engl; 2008; 47(51):9916-21. PubMed ID: 19016290
    [No Abstract]   [Full Text] [Related]  

  • 4. Study on the surface wetting mechanism of bituminous coal based on the microscopic molecular structure.
    Zhao Y; Li H; Lei J; Xie J; Li L; Gan Y; Deng J; Qi R; Liu Y
    RSC Adv; 2023 Feb; 13(9):5933-5945. PubMed ID: 36816080
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fluoropolymer: A Review on Its Emulsion Preparation and Wettability to Solid-Liquid Interface.
    Liang L; Wen T; Xin J; Su C; Song K; Zhao W; Liu H; Su G
    Molecules; 2023 Jan; 28(2):. PubMed ID: 36677962
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microporous Structure Formation of Poly(methyl methacrylate) via Polymerization-Induced Phase Separation in the Presence of Poly(ethylene glycol).
    Suzuki Y; Onozato S; Shinagawa Y; Matsumoto A
    ACS Omega; 2022 Nov; 7(43):38933-38941. PubMed ID: 36340152
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A versatile "3M" methodology to obtain superhydrophobic PDMS-based materials for antifouling applications.
    He Z; Yang X; Mu L; Wang N; Lan X
    Front Bioeng Biotechnol; 2022; 10():998852. PubMed ID: 36105602
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Superhydrophobic engineering materials provide a rapid and simple route for highly efficient self-driven crude oil spill cleanup.
    Xu H; Bao S; Gong L; Ma R; Pan L; Li Y; Zhao J
    RSC Adv; 2018 Nov; 8(67):38363-38369. PubMed ID: 35559063
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tunable superoleophobicity
    Barman J; Majumder SK; Roy PK; Khare K
    RSC Adv; 2018 Apr; 8(24):13253-13258. PubMed ID: 35542509
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Growth of hierarchical gold clusters for use in superomniphobic electrodes.
    Lee S; Kim W; Yim C; Yong K; Jeon S
    RSC Adv; 2019 Jan; 9(2):761-765. PubMed ID: 35517590
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Roles of Membrane Technology in Artificial Organs: Current Challenges and Perspectives.
    Duy Nguyen BT; Nguyen Thi HY; Nguyen Thi BP; Kang DK; Kim JF
    Membranes (Basel); 2021 Mar; 11(4):. PubMed ID: 33800659
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular Aggregation Structure and Surface Properties of Biomimetic Catechol-Bearing Poly[2-(perfluorooctyl)ethyl acrylate] and Its Application to Superamphiphobic Coatings.
    Ma W; Ameduri B; Takahara A
    ACS Omega; 2020 Apr; 5(14):8169-8180. PubMed ID: 32309727
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rapid Fabrication of a Crystalline Myristic Acid-Based Superhydrophobic Film with Corrosion Resistance on Magnesium Alloys by the Facile One-Step Immersion Process.
    Ishizaki T; Shimada Y; Tsunakawa M; Lee H; Yokomizo T; Hisada S; Nakamura K
    ACS Omega; 2017 Nov; 2(11):7904-7915. PubMed ID: 31457344
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bio-Inspired Polymeric Structures with Special Wettability and Their Applications: An Overview.
    Pan Z; Cheng F; Zhao B
    Polymers (Basel); 2017 Dec; 9(12):. PubMed ID: 30966026
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Surface Chemistry Enhancements for the Tunable Super-Liquid Repellency of Low-Surface-Tension Liquids.
    Wong WSY
    Nano Lett; 2019 Mar; 19(3):1892-1901. PubMed ID: 30726096
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biomimetic Super Anti-Wetting Coatings from Natural Materials: Superamphiphobic Coatings Based on Nanoclays.
    Dong J; Zhang J
    Sci Rep; 2018 Aug; 8(1):12062. PubMed ID: 30104741
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Zinc oxide nanoparticle induced age dependent immunotoxicity in BALB/c mice.
    Senapati VA; Gupta GS; Pandey AK; Shanker R; Dhawan A; Kumar A
    Toxicol Res (Camb); 2017 May; 6(3):342-352. PubMed ID: 30090503
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanically Robust and Thermally Stable Colorful Superamphiphobic Coatings.
    Tian N; Zhang P; Zhang J
    Front Chem; 2018; 6():144. PubMed ID: 29761099
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Polymeric Nanocomposite Membranes for Next Generation Pervaporation Process: Strategies, Challenges and Future Prospects.
    Roy S; Singha NR
    Membranes (Basel); 2017 Sep; 7(3):. PubMed ID: 28885591
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Review on Development and Applications of Bio-Inspired Superhydrophobic Textiles.
    Ahmad I; Kan CW
    Materials (Basel); 2016 Nov; 9(11):. PubMed ID: 28774012
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.