BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

230 related articles for article (PubMed ID: 19100553)

  • 1. Methods of calculating protein hydrophobicity and their application in developing correlations to predict hydrophobic interaction chromatography retention.
    Mahn A; Lienqueo ME; Salgado JC
    J Chromatogr A; 2009 Mar; 1216(10):1838-44. PubMed ID: 19100553
    [TBL] [Abstract][Full Text] [Related]  

  • 2. New approaches for predicting protein retention time in hydrophobic interaction chromatography.
    Lienqueo ME; Mahn A; Navarro G; Salgado JC; Perez-Acle T; Rapaport I; Asenjo JA
    J Mol Recognit; 2006; 19(4):260-9. PubMed ID: 16752432
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Current insights on protein behaviour in hydrophobic interaction chromatography.
    Lienqueo ME; Mahn A; Salgado JC; Asenjo JA
    J Chromatogr B Analyt Technol Biomed Life Sci; 2007 Apr; 849(1-2):53-68. PubMed ID: 17141587
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prediction of protein retention in hydrophobic interaction chromatography.
    Mahn A; Asenjo JA
    Biotechnol Adv; 2005 Jul; 23(5):359-68. PubMed ID: 15894452
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Predicting the behaviour of proteins in hydrophobic interaction chromatography. 1: Using the hydrophobic imbalance (HI) to describe their surface amino acid distribution.
    Salgado JC; Rapaport I; Asenjo JA
    J Chromatogr A; 2006 Feb; 1107(1-2):110-9. PubMed ID: 16384569
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Predicting the behaviour of proteins in hydrophobic interaction chromatography. 2. Using a statistical description of their surface amino acid distribution.
    Salgado JC; Rapaport I; Asenjo JA
    J Chromatogr A; 2006 Feb; 1107(1-2):120-9. PubMed ID: 16384574
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prediction of retention time of cutinases tagged with hydrophobic peptides in hydrophobic interaction chromatography.
    Lienqueo ME; Salazar O; Henriquez K; Calado CR; Fonseca LP; Cabral JM
    J Chromatogr A; 2007 Jun; 1154(1-2):460-3. PubMed ID: 17448484
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Probing protein surface accessibility of amino acid substitutions using hydrophobic interaction chromatography.
    Becker K; Grey M; Bülow L
    J Chromatogr A; 2008 Dec; 1215(1-2):152-5. PubMed ID: 19022452
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prediction of retention times of proteins in hydrophobic interaction chromatography using only their amino acid composition.
    Salgado JC; Rapaport I; Asenjo JA
    J Chromatogr A; 2005 Dec; 1098(1-2):44-54. PubMed ID: 16314160
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prediction of protein retention times in gradient hydrophobic interaction chromatographic systems.
    Chen J; Yang T; Cramer SM
    J Chromatogr A; 2008 Jan; 1177(2):207-14. PubMed ID: 18048048
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Investigation of protein retention and selectivity in HIC systems using quantitative structure retention relationship models.
    Ladiwala A; Xia F; Luo Q; Breneman CM; Cramer SM
    Biotechnol Bioeng; 2006 Apr; 93(5):836-50. PubMed ID: 16276531
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mixed retention mechanism of proteins in weak anion-exchange chromatography.
    Liu P; Yang H; Geng X
    J Chromatogr A; 2009 Oct; 1216(44):7497-504. PubMed ID: 19619880
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamic control of protein conformation transition in chromatographic separation based on hydrophobic interactions: molecular dynamics simulation.
    Zhang L; Lu D; Liu Z
    J Chromatogr A; 2009 Mar; 1216(12):2483-90. PubMed ID: 19178912
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hydrophobic interaction chromatography: harnessing multivalent protein-surface interactions for purification procedures.
    Jennissen HP
    Methods Mol Biol; 2005; 305():81-99. PubMed ID: 15943009
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of multimodal hydrophobic interaction chromatography media useful for isolation of green fluorescent proteins with small structural differences.
    Becker K; Hallgren E; Carredano E; Palmgren R; Bülow L
    J Mol Recognit; 2009; 22(2):104-9. PubMed ID: 18654996
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Generalizing a two-conformation model for describing salt and temperature effects on protein retention and stability in hydrophobic interaction chromatography.
    Xiao Y; Rathore A; O'Connell JP; Fernandez EJ
    J Chromatogr A; 2007 Jul; 1157(1-2):197-206. PubMed ID: 17524412
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Classification of protein adsorption and recovery at low salt conditions in hydrophobic interaction chromatographic systems.
    Chen J; Luo Q; Breneman CM; Cramer SM
    J Chromatogr A; 2007 Jan; 1139(2):236-46. PubMed ID: 17126350
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimal operation conditions for protein separation in hydrophobic interaction chromatography.
    Mahn A; Lienqueo ME; Asenjo JA
    J Chromatogr B Analyt Technol Biomed Life Sci; 2007 Apr; 849(1-2):236-42. PubMed ID: 17027350
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interaction of fibrinogen with n-alkylagaroses and its purification by critical hydrophobicity hydrophobic interaction chromatograpy.
    Jennissen HP; Demiroglou A
    J Chromatogr A; 2006 Mar; 1109(2):197-213. PubMed ID: 16488424
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Novel in situ polymerized coatings for hydrophobic interaction chromatography media.
    Fexby S; Ihre H; Bülow L; Van Alstine JM
    J Chromatogr A; 2007 Aug; 1161(1-2):234-41. PubMed ID: 17624362
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.