These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
173 related articles for article (PubMed ID: 19100853)
1. GFP sheds light on the infection process of avocado roots by Rosellinia necatrix. Pliego C; Kanematsu S; Ruano-Rosa D; de Vicente A; López-Herrera C; Cazorla FM; Ramos C Fungal Genet Biol; 2009 Feb; 46(2):137-45. PubMed ID: 19100853 [TBL] [Abstract][Full Text] [Related]
2. Two similar enhanced root-colonizing Pseudomonas strains differ largely in their colonization strategies of avocado roots and Rosellinia necatrix hyphae. Pliego C; de Weert S; Lamers G; de Vicente A; Bloemberg G; Cazorla FM; Ramos C Environ Microbiol; 2008 Dec; 10(12):3295-304. PubMed ID: 18684119 [TBL] [Abstract][Full Text] [Related]
3. Infection of Rosellinia necatrix with purified viral particles of a member of Partitiviridae (RnPV1-W8). Sasaki A; Kanematsu S; Onoue M; Oyama Y; Yoshida K Arch Virol; 2006 Apr; 151(4):697-707. PubMed ID: 16307176 [TBL] [Abstract][Full Text] [Related]
4. A moderate level of hypovirulence conferred by a hypovirus in the avocado white root rot fungus, Rosellinia necatrix. Arjona-López JM; Telengech P; Suzuki N; López-Herrera CJ Fungal Biol; 2021 Jan; 125(1):69-76. PubMed ID: 33317778 [TBL] [Abstract][Full Text] [Related]
5. Transcriptome analysis of the fungal pathogen Rosellinia necatrix during infection of a susceptible avocado rootstock identifies potential mechanisms of pathogenesis. Zumaquero A; Kanematsu S; Nakayashiki H; Matas A; Martínez-Ferri E; Barceló-Muñóz A; Pliego-Alfaro F; López-Herrera C; Cazorla FM; Pliego C BMC Genomics; 2019 Dec; 20(1):1016. PubMed ID: 31878883 [TBL] [Abstract][Full Text] [Related]
6. Selection for biocontrol bacteria antagonistic toward Rosellinia necatrix by enrichment of competitive avocado root tip colonizers. Pliego C; Cazorla FM; González-Sánchez MA; Pérez-Jiménez RM; de Vicente A; Ramos C Res Microbiol; 2007 Jun; 158(5):463-70. PubMed ID: 17467245 [TBL] [Abstract][Full Text] [Related]
7. Biocontrol of avocado dematophora root rot by antagonistic Pseudomonas fluorescens PCL1606 correlates with the production of 2-hexyl 5-propyl resorcinol. Cazorla FM; Duckett SB; Bergström ET; Noreen S; Odijk R; Lugtenberg BJ; Thomas-Oates JE; Bloemberg GV Mol Plant Microbe Interact; 2006 Apr; 19(4):418-28. PubMed ID: 16610745 [TBL] [Abstract][Full Text] [Related]
8. Mild water stress-induced priming enhance tolerance to Rosellinia necatrix in susceptible avocado rootstocks. Martínez-Ferri E; Moreno-Ortega G; van den Berg N; Pliego C BMC Plant Biol; 2019 Oct; 19(1):458. PubMed ID: 31664901 [TBL] [Abstract][Full Text] [Related]
9. Agrobacterium tumefaciens-mediated transformation of the plant pathogenic fungus Rosellinia necatrix. Kano S; Kurita T; Kanematsu S; Morinaga T Mikrobiologiia; 2011; 80(1):86-92. PubMed ID: 21513216 [TBL] [Abstract][Full Text] [Related]
10. Rosellinia necatrix infection induces differential gene expression between tolerant and susceptible avocado rootstocks. Zumaquero A; Martínez-Ferri E; Matas AJ; Reeksting B; Olivier NA; Pliego-Alfaro F; Barceló A; van den Berg N; Pliego C PLoS One; 2019; 14(2):e0212359. PubMed ID: 30763398 [TBL] [Abstract][Full Text] [Related]
11. Role of 2-hexyl, 5-propyl resorcinol production by Pseudomonas chlororaphis PCL1606 in the multitrophic interactions in the avocado rhizosphere during the biocontrol process. Calderón CE; de Vicente A; Cazorla FM FEMS Microbiol Ecol; 2014 Jul; 89(1):20-31. PubMed ID: 24641321 [TBL] [Abstract][Full Text] [Related]
12. Response of the Biocontrol Agent Pseudomonas pseudoalcaligenes AVO110 to Rosellinia necatrix Exudate. Pliego C; Crespo-Gómez JI; Pintado A; Pérez-Martínez I; de Vicente A; Cazorla FM; Ramos C Appl Environ Microbiol; 2019 Feb; 85(3):. PubMed ID: 30478234 [TBL] [Abstract][Full Text] [Related]
13. Comparison between Rosellinia necatrix isolates from soil and diseased roots in terms of hypovirulence. Ikeda K; Nakamura H; Matsumoto N FEMS Microbiol Ecol; 2005 Oct; 54(2):307-15. PubMed ID: 16332329 [TBL] [Abstract][Full Text] [Related]
14. Impact of motility and chemotaxis features of the rhizobacterium Pseudomonas chlororaphis PCL1606 on its biocontrol of avocado white root rot. Polonio Á; Vida C; de Vicente A; Cazorla FM Int Microbiol; 2017 Jun; 20(2):95-104. PubMed ID: 28617527 [TBL] [Abstract][Full Text] [Related]
15. Isolation and characterization of antagonistic Bacillus subtilis strains from the avocado rhizoplane displaying biocontrol activity. Cazorla FM; Romero D; Pérez-García A; Lugtenberg BJ; Vicente Ad; Bloemberg G J Appl Microbiol; 2007 Nov; 103(5):1950-9. PubMed ID: 17953605 [TBL] [Abstract][Full Text] [Related]
16. Developing tools to unravel the biological secrets of Rosellinia necatrix, an emergent threat to woody crops. Pliego C; López-Herrera C; Ramos C; Cazorla FM Mol Plant Pathol; 2012 Apr; 13(3):226-39. PubMed ID: 22014332 [TBL] [Abstract][Full Text] [Related]
17. Two novel partitiviruses that accumulate differentially in Rosellinia necatrix and Entoleuca sp. infecting avocado. Velasco L; López-Herrera C; Cretazzo E Virus Res; 2020 Aug; 285():198020. PubMed ID: 32416260 [TBL] [Abstract][Full Text] [Related]
18. Effects of Exogenous Application of Methyl Jasmonate and Salicylic Acid on the Physiological and Molecular Response of 'Dusa' Avocado to Moreno-Pérez A; Martínez-Ferri E; van den Berg N; Pliego C Plant Dis; 2024 Jul; 108(7):2111-2121. PubMed ID: 38530233 [TBL] [Abstract][Full Text] [Related]
19. Rosellinia compacta, a new species similar to the white root rot fungus Rosellinia necatrix. Takemoto S; Nakamura H; Sasaki A; Shimane T Mycologia; 2009; 101(1):84-94. PubMed ID: 19271671 [TBL] [Abstract][Full Text] [Related]
20. New insights into the infection process of Rhynchosporium secalis in barley using GFP. Linsell KJ; Keiper FJ; Forgan A; Oldach KH Fungal Genet Biol; 2011 Feb; 48(2):124-31. PubMed ID: 20955811 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]