These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

76 related articles for article (PubMed ID: 19100983)

  • 1. A method for determining minimal sets of markers for the estimation of center of mass, linear and angular momentum.
    Forsell C; Halvorsen K
    J Biomech; 2009 Feb; 42(3):361-5. PubMed ID: 19100983
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Minimal marker set for center of mass estimation in running.
    Halvorsen K; Eriksson M; Gullstrand L; Tinmark F; Nilsson J
    Gait Posture; 2009 Nov; 30(4):552-5. PubMed ID: 19665896
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ambulatory center of mass prediction using body accelerations and center of foot pressure.
    Betker AL; Moussavi ZM; Szturm T
    IEEE Trans Biomed Eng; 2008 Nov; 55(11):2491-8. PubMed ID: 18990618
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Estimation of 2-D center of mass movement during trunk flexion-extension movements using body accelerations.
    Betker AL; Szturm T; Moussavi ZM
    IEEE Trans Neural Syst Rehabil Eng; 2009 Dec; 17(6):553-9. PubMed ID: 19775986
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tracking the motion of hidden segments using kinematic constraints and Kalman filtering.
    Halvorsen K; Johnston C; Back W; Stokes V; Lanshammar H
    J Biomech Eng; 2008 Feb; 130(1):011012. PubMed ID: 18298188
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Angular momentum of walking at different speeds.
    Bennett BC; Russell SD; Sheth P; Abel MF
    Hum Mov Sci; 2010 Feb; 29(1):114-24. PubMed ID: 19889468
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Measurements of vertical displacement in running, a methodological comparison.
    Gullstrand L; Halvorsen K; Tinmark F; Eriksson M; Nilsson J
    Gait Posture; 2009 Jul; 30(1):71-5. PubMed ID: 19356933
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimizing the determination of the body center of mass.
    Kingma I; Toussaint HM; Commissaris DA; Hoozemans MJ; Ober MJ
    J Biomech; 1995 Sep; 28(9):1137-42. PubMed ID: 7559685
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Solutions for representing the whole-body centre of mass in side cutting manoeuvres based on data that is typically available for lower limb kinematics.
    Vanrenterghem J; Gormley D; Robinson M; Lees A
    Gait Posture; 2010 Apr; 31(4):517-21. PubMed ID: 20299222
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Angular momentum in human walking.
    Herr H; Popovic M
    J Exp Biol; 2008 Feb; 211(Pt 4):467-81. PubMed ID: 18245623
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improving net joint torque calculations through a two-step optimization method for estimating body segment parameters.
    Riemer R; Hsiao-Wecksler ET
    J Biomech Eng; 2009 Jan; 131(1):011007. PubMed ID: 19045923
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Validation of a protocol for the estimation of three-dimensional body center of mass kinematics in sport.
    Mapelli A; Zago M; Fusini L; Galante D; Colombo A; Sforza C
    Gait Posture; 2014; 39(1):460-5. PubMed ID: 24054347
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Posturographic analysis through markerless motion capture without ground reaction forces measurement.
    Corazza S; Andriacchi TP
    J Biomech; 2009 Feb; 42(3):370-4. PubMed ID: 19147143
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The 'extrapolated center of mass' concept suggests a simple control of balance in walking.
    Hof AL
    Hum Mov Sci; 2008 Feb; 27(1):112-25. PubMed ID: 17935808
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improving joint torque calculations: optimization-based inverse dynamics to reduce the effect of motion errors.
    Riemer R; Hsiao-Wecksler ET
    J Biomech; 2008; 41(7):1503-9. PubMed ID: 18396292
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The dynamic balance of the children with cerebral palsy and typical developing during gait. Part I: Spatial relationship between COM and COP trajectories.
    Hsue BJ; Miller F; Su FC
    Gait Posture; 2009 Apr; 29(3):465-70. PubMed ID: 19111469
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reaching to multiple targets when standing: the spatial organization of feedforward postural adjustments.
    Leonard JA; Brown RH; Stapley PJ
    J Neurophysiol; 2009 Apr; 101(4):2120-33. PubMed ID: 19211658
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Determining rigid body transformation parameters from ill-conditioned spatial marker co-ordinates.
    Carman AB; Milburn PD
    J Biomech; 2006; 39(10):1778-86. PubMed ID: 16098982
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regression relationships of landing height with ground reaction forces, knee flexion angles, angular velocities and joint powers during double-leg landing.
    Yeow CH; Lee PV; Goh JC
    Knee; 2009 Oct; 16(5):381-6. PubMed ID: 19250828
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Postural instability in cerebellar ataxia: correlations of knee, arm and trunk movements to center of mass velocity.
    Küng UM; Horlings CG; Honegger F; Kremer HP; Bloem BR; van De Warrenburg BP; Allum JH
    Neuroscience; 2009 Mar; 159(1):390-404. PubMed ID: 19136042
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.