These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
195 related articles for article (PubMed ID: 19101004)
1. West Nile virus genome amplification requires the functional activities of the proteasome. Gilfoy F; Fayzulin R; Mason PW Virology; 2009 Mar; 385(1):74-84. PubMed ID: 19101004 [TBL] [Abstract][Full Text] [Related]
2. The 2',5'-oligoadenylate synthetase 1b is a potent inhibitor of West Nile virus replication inside infected cells. Kajaste-Rudnitski A; Mashimo T; Frenkiel MP; Guénet JL; Lucas M; Desprès P J Biol Chem; 2006 Feb; 281(8):4624-37. PubMed ID: 16371364 [TBL] [Abstract][Full Text] [Related]
3. Appraising the roles of CBLL1 and the ubiquitin/proteasome system for flavivirus entry and replication. Fernandez-Garcia MD; Meertens L; Bonazzi M; Cossart P; Arenzana-Seisdedos F; Amara A J Virol; 2011 Mar; 85(6):2980-9. PubMed ID: 21191016 [TBL] [Abstract][Full Text] [Related]
4. Genetic systems of West Nile virus and their potential applications. Shi PY Curr Opin Investig Drugs; 2003 Aug; 4(8):959-65. PubMed ID: 14508880 [TBL] [Abstract][Full Text] [Related]
5. Valosin-containing protein (VCP/p97) plays a role in the replication of West Nile virus. Phongphaew W; Kobayashi S; Sasaki M; Carr M; Hall WW; Orba Y; Sawa H Virus Res; 2017 Jan; 228():114-123. PubMed ID: 27914931 [TBL] [Abstract][Full Text] [Related]
6. West Nile Virus-Inclusive Single-Cell RNA Sequencing Reveals Heterogeneity in the Type I Interferon Response within Single Cells. O'Neal JT; Upadhyay AA; Wolabaugh A; Patel NB; Bosinger SE; Suthar MS J Virol; 2019 Mar; 93(6):. PubMed ID: 30626670 [TBL] [Abstract][Full Text] [Related]
7. Noncoding Subgenomic Flavivirus RNA Is Processed by the Mosquito RNA Interference Machinery and Determines West Nile Virus Transmission by Culex pipiens Mosquitoes. Göertz GP; Fros JJ; Miesen P; Vogels CBF; van der Bent ML; Geertsema C; Koenraadt CJM; van Rij RP; van Oers MM; Pijlman GP J Virol; 2016 Nov; 90(22):10145-10159. PubMed ID: 27581979 [TBL] [Abstract][Full Text] [Related]
8. Methodology for Identifying Host Factors Involved in West Nile Virus Infection. Krishnan MN Methods Mol Biol; 2016; 1435():115-27. PubMed ID: 27188554 [TBL] [Abstract][Full Text] [Related]
9. AUF1 p45 promotes West Nile virus replication by an RNA chaperone activity that supports cyclization of the viral genome. Friedrich S; Schmidt T; Geissler R; Lilie H; Chabierski S; Ulbert S; Liebert UG; Golbik RP; Behrens SE J Virol; 2014 Oct; 88(19):11586-99. PubMed ID: 25078689 [TBL] [Abstract][Full Text] [Related]
10. Autophagy inhibits viral genome replication and gene expression stages in West Nile virus infection. Kobayashi S; Orba Y; Yamaguchi H; Takahashi K; Sasaki M; Hasebe R; Kimura T; Sawa H Virus Res; 2014 Oct; 191():83-91. PubMed ID: 25091564 [TBL] [Abstract][Full Text] [Related]
11. RNA interference screen for human genes associated with West Nile virus infection. Krishnan MN; Ng A; Sukumaran B; Gilfoy FD; Uchil PD; Sultana H; Brass AL; Adametz R; Tsui M; Qian F; Montgomery RR; Lev S; Mason PW; Koski RA; Elledge SJ; Xavier RJ; Agaisse H; Fikrig E Nature; 2008 Sep; 455(7210):242-5. PubMed ID: 18690214 [TBL] [Abstract][Full Text] [Related]
12. Enhancement of protein expression by alphavirus replicons by designing self-replicating subgenomic RNAs. Kim DY; Atasheva S; McAuley AJ; Plante JA; Frolova EI; Beasley DW; Frolov I Proc Natl Acad Sci U S A; 2014 Jul; 111(29):10708-13. PubMed ID: 25002490 [TBL] [Abstract][Full Text] [Related]
13. Vector derived artificial miRNA mediated inhibition of West Nile virus replication and protein expression. Karothia D; Kumar Dash P; Parida M; Bhagyawant SS; Kumar JS Gene; 2020 Mar; 729():144300. PubMed ID: 31884102 [TBL] [Abstract][Full Text] [Related]
14. Discovery of small molecule inhibitors of West Nile virus using a high-throughput sub-genomic replicon screen. Gu B; Ouzunov S; Wang L; Mason P; Bourne N; Cuconati A; Block TM Antiviral Res; 2006 Jun; 70(2):39-50. PubMed ID: 16724398 [TBL] [Abstract][Full Text] [Related]
15. Inhibition of West Nile virus Replication by Bifunctional siRNA Targeting the NS2A and NS5 Conserved Region. Karothia D; Dash PK; Parida M; Bhagyawant S; Kumar JS Curr Gene Ther; 2018; 18(3):180-190. PubMed ID: 29874999 [TBL] [Abstract][Full Text] [Related]
16. West Nile Virus Subgenomic RNAs Modulate Gene Expression in a Neuronal Cell Line. Bampali M; Kouvela A; Kesesidis N; Kassela K; Dovrolis N; Karakasiliotis I Viruses; 2024 May; 16(5):. PubMed ID: 38793693 [TBL] [Abstract][Full Text] [Related]
17. The West Nile virus genome harbors essential riboregulatory elements with conserved and host-specific functional roles. Huston NC; Tsao LH; Brackney DE; Pyle AM Proc Natl Acad Sci U S A; 2024 Jul; 121(29):e2312080121. PubMed ID: 38985757 [TBL] [Abstract][Full Text] [Related]
18. Actively replicating West Nile virus is resistant to cytoplasmic delivery of siRNA. Geiss BJ; Pierson TC; Diamond MS Virol J; 2005 Jun; 2():53. PubMed ID: 15985182 [TBL] [Abstract][Full Text] [Related]
19. Construction and characterization of subgenomic replicons of New York strain of West Nile virus. Shi PY; Tilgner M; Lo MK Virology; 2002 May; 296(2):219-33. PubMed ID: 12069521 [TBL] [Abstract][Full Text] [Related]
20. Adaptation of West Nile virus replicons to cells in culture and use of replicon-bearing cells to probe antiviral action. Rossi SL; Zhao Q; O'Donnell VK; Mason PW Virology; 2005 Jan; 331(2):457-70. PubMed ID: 15629788 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]