These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 19101669)

  • 1. Theoretical basis for identification of different anesthetic states based on routinely recorded EEG during operation.
    Nguyen-Ky T; Wen P; Li Y
    Comput Biol Med; 2009 Jan; 39(1):40-5. PubMed ID: 19101669
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Monitoring the depth of anesthesia using a fuzzy neural network based on EEG].
    Li M; Ye ZQ
    Zhongguo Yi Liao Qi Xie Za Zhi; 2006 Jul; 30(4):253-5. PubMed ID: 17039930
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The discriminant power of simultaneous monitoring of spontaneous electroencephalogram and evoked potentials as a predictor of different clinical states of general anesthesia.
    Jeleazcov C; Schneider G; Daunderer M; Scheller B; Schüttler J; Schwilden H
    Anesth Analg; 2006 Oct; 103(4):894-901. PubMed ID: 17000800
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Construction of the electroencephalogram player: a device to present electroencephalogram data to electroencephalogram-based anesthesia monitors.
    Kreuzer M; Kochs EF; Pilge S; Stockmanns G; Schneider G
    Anesth Analg; 2007 Jan; 104(1):135-9. PubMed ID: 17179258
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Time-frequency properties of electroencephalogram during induction of anesthesia.
    Kortelainen J; Koskinen M; Mustola S; Seppänen T
    Neurosci Lett; 2008 Dec; 446(2-3):70-4. PubMed ID: 18835327
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A combination of electroencephalogram and auditory evoked potentials separates different levels of anesthesia in volunteers.
    Horn B; Pilge S; Kochs EF; Stockmanns G; Hock A; Schneider G
    Anesth Analg; 2009 May; 108(5):1512-21. PubMed ID: 19372330
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of FFT and marginal spectra of EEG using empirical mode decomposition to monitor anesthesia.
    Chen SJ; Peng CJ; Chen YC; Hwang YR; Lai YS; Fan SZ; Jen KK
    Comput Methods Programs Biomed; 2016 Dec; 137():77-85. PubMed ID: 28110742
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Detrended fluctuation analysis of EEG as a measure of depth of anesthesia.
    Jospin M; Caminal P; Jensen EW; Litvan H; Vallverdú M; Struys MM; Vereecke HE; Kaplan DT
    IEEE Trans Biomed Eng; 2007 May; 54(5):840-6. PubMed ID: 17518280
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Educational simulation of the electroencephalogram (EEG).
    de Beer NA; van Meurs WL; Grit MB; Good ML; Gravenstein D
    Technol Health Care; 2001; 9(3):237-56. PubMed ID: 11381204
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [The electroencephalogram for real-time neurophysiologic monitoring in anesthesia and intensive care].
    Facco E; Donà B; Behr AU; Munari M; Baratto F; Giron GP
    Minerva Anestesiol; 1993 Oct; 59(10 Suppl 3):13-7. PubMed ID: 8290101
    [No Abstract]   [Full Text] [Related]  

  • 11. Monitoring the Depth of Anesthesia Using a New Adaptive Neurofuzzy System.
    Shalbaf A; Saffar M; Sleigh JW; Shalbaf R
    IEEE J Biomed Health Inform; 2018 May; 22(3):671-677. PubMed ID: 28574372
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A comparison of the ability of the EEGo and BIS monitors to assess emergence following neurosurgery.
    Pauls RJ; Dickson TJ; Kaufmann AM; Cappellani RB; Ringaert KR; West M; Silvaggio JA; Wilkinson MF; Girling LG; Mutch WA
    Can J Anaesth; 2009 May; 56(5):366-73. PubMed ID: 19340492
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Detection of mental task-induced changes in EEG patterns by detrended fluctuation analysis (DFA)].
    Imai R; Okamoto Y
    Rinsho Byori; 2008 May; 56(5):383-6. PubMed ID: 18546887
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Intra-operative EEG monitoring; the performance of the NEUROTRAC].
    Kinefuchi Y; Nakamura T; Takiguchi M; Yamasaki Y; Amano M
    Masui; 1984 Oct; 33(10):1112-7. PubMed ID: 6520911
    [No Abstract]   [Full Text] [Related]  

  • 15. [The neuro-anaesthesiology assisted by the electroencephalogram].
    Pandin P
    Ann Fr Anesth Reanim; 2004 Apr; 23(4):395-403. PubMed ID: 15120787
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of filters in the detrended fluctuation analysis of digital electroencephalographic data.
    Valencia M; Artieda J; Alegre M; Maza D
    J Neurosci Methods; 2008 May; 170(2):310-6. PubMed ID: 18295900
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A further statement on automated EEG processing for intraoperative monitoring.
    Klein FF; Davis DA
    Anesthesiology; 1981 May; 54(5):433-4. PubMed ID: 7224220
    [No Abstract]   [Full Text] [Related]  

  • 18. Nonlinear analysis of anesthesia dynamics by Fractal Scaling Exponent.
    Gifani P; Rabiee HR; Hashemi MR; Taslimi P; Ghanbari M
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():6225-8. PubMed ID: 17946751
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Update on anesthetic and metabolic effects during intraoperative neurophysiological monitoring (IONM).
    Banoczi W
    Am J Electroneurodiagnostic Technol; 2005 Dec; 45(4):225-39. PubMed ID: 16457049
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sleep spindles and spike-wave discharges in EEG: Their generic features, similarities and distinctions disclosed with Fourier transform and continuous wavelet analysis.
    Sitnikova E; Hramov AE; Koronovsky AA; van Luijtelaar G
    J Neurosci Methods; 2009 Jun; 180(2):304-16. PubMed ID: 19383511
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.