These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
383 related articles for article (PubMed ID: 19101682)
21. Protein-resistant polyurethane prepared by surface-initiated atom transfer radical graft polymerization (ATRgP) of water-soluble polymers: effects of main chain and side chain lengths of grafts. Jin Z; Feng W; Beisser K; Zhu S; Sheardown H; Brash JL Colloids Surf B Biointerfaces; 2009 Apr; 70(1):53-9. PubMed ID: 19150594 [TBL] [Abstract][Full Text] [Related]
22. Self-assembled monothiol-terminated hyperbranched polyglycerols on a gold surface: a comparative study on the structure, morphology, and protein adsorption characteristics with linear poly(ethylene glycol)s. J Yeh PY; Kainthan RK; Zou Y; Chiao M; Kizhakkedathu JN Langmuir; 2008 May; 24(9):4907-16. PubMed ID: 18361531 [TBL] [Abstract][Full Text] [Related]
24. Control of nanobiointerfaces generated from well-defined biomimetic polymer brushes for protein and cell manipulations. Iwata R; Suk-In P; Hoven VP; Takahara A; Akiyoshi K; Iwasaki Y Biomacromolecules; 2004; 5(6):2308-14. PubMed ID: 15530046 [TBL] [Abstract][Full Text] [Related]
25. Chain conformation of a new class of PEG-based thermoresponsive polymer brushes grafted on silicon as determined by neutron reflectometry. Gao X; Kucerka N; Nieh MP; Katsaras J; Zhu S; Brash JL; Sheardown H Langmuir; 2009 Sep; 25(17):10271-8. PubMed ID: 19705903 [TBL] [Abstract][Full Text] [Related]
26. Protein microarrays based on polymer brushes prepared via surface-initiated atom transfer radical polymerization. Barbey R; Kauffmann E; Ehrat M; Klok HA Biomacromolecules; 2010 Dec; 11(12):3467-79. PubMed ID: 21090572 [TBL] [Abstract][Full Text] [Related]
27. Adsorption isotherms and dissipation of adsorbed poly(N-isopropylacrylamide) in its swelling and collapsed states. Wu K; Wu B; Wang P; Hou Y; Zhang G; Zhu DM J Phys Chem B; 2007 Aug; 111(30):8723-7. PubMed ID: 17625828 [TBL] [Abstract][Full Text] [Related]
28. Blood clearance and biodistribution of polymer brush-afforded silica particles prepared by surface-initiated living radical polymerization. Ohno K; Akashi T; Tsujii Y; Yamamoto M; Tabata Y Biomacromolecules; 2012 Mar; 13(3):927-36. PubMed ID: 22324307 [TBL] [Abstract][Full Text] [Related]
29. Biofunctionalized protein resistant oligo(ethylene glycol)-derived polymer brushes as selective immobilization and sensing platforms. Trmcic-Cvitas J; Hasan E; Ramstedt M; Li X; Cooper MA; Abell C; Huck WT; Gautrot JE Biomacromolecules; 2009 Oct; 10(10):2885-94. PubMed ID: 19761181 [TBL] [Abstract][Full Text] [Related]
30. Effects of graft densities and chain lengths on separation of bioactive compounds by nanolayered thermoresponsive polymer brush surfaces. Nagase K; Kobayashi J; Kikuchi A; Akiyama Y; Kanazawa H; Okano T Langmuir; 2008 Jan; 24(2):511-7. PubMed ID: 18085801 [TBL] [Abstract][Full Text] [Related]
31. Preparation of thermoresponsive polymer brush surfaces and their interaction with cells. Mizutani A; Kikuchi A; Yamato M; Kanazawa H; Okano T Biomaterials; 2008 May; 29(13):2073-81. PubMed ID: 18261791 [TBL] [Abstract][Full Text] [Related]
32. Surface and bulk collapse transitions of thermoresponsive polymer brushes. Laloyaux X; Mathy B; Nysten B; Jonas AM Langmuir; 2010 Jan; 26(2):838-47. PubMed ID: 19842635 [TBL] [Abstract][Full Text] [Related]
33. Zwitterionic polymers exhibiting high resistance to nonspecific protein adsorption from human serum and plasma. Ladd J; Zhang Z; Chen S; Hower JC; Jiang S Biomacromolecules; 2008 May; 9(5):1357-61. PubMed ID: 18376858 [TBL] [Abstract][Full Text] [Related]
34. PNIPAM chain collapse depends on the molecular weight and grafting density. Plunkett KN; Zhu X; Moore JS; Leckband DE Langmuir; 2006 Apr; 22(9):4259-66. PubMed ID: 16618173 [TBL] [Abstract][Full Text] [Related]
35. Density functional theory for adsorption of colloids on the polymer-tethered surfaces: effect of polymer chain architecture. Xu X; Cao D J Chem Phys; 2009 Apr; 130(16):164901. PubMed ID: 19405624 [TBL] [Abstract][Full Text] [Related]
36. Temperature dependent activity and structure of adsorbed proteins on plasma polymerized N-isopropyl acrylamide. Cheng X; Canavan HE; Graham DJ; Castner DG; Ratner BD Biointerphases; 2006 Mar; 1(1):61. PubMed ID: 20408616 [TBL] [Abstract][Full Text] [Related]
37. Tribological properties of hydrophilic polymer brushes under wet conditions. Kobayashi M; Takahara A Chem Rec; 2010 Aug; 10(4):208-16. PubMed ID: 20533448 [TBL] [Abstract][Full Text] [Related]
38. Solid-liquid separations with a temperature-responsive polymeric flocculant: effect of temperature and molecular weight on polymer adsorption and deposition. O'Shea JP; Qiao GG; Franks GV J Colloid Interface Sci; 2010 Aug; 348(1):9-23. PubMed ID: 20488449 [TBL] [Abstract][Full Text] [Related]
39. High capacity, charge-selective protein uptake by polyelectrolyte brushes. Kusumo A; Bombalski L; Lin Q; Matyjaszewski K; Schneider JW; Tilton RD Langmuir; 2007 Apr; 23(8):4448-54. PubMed ID: 17358090 [TBL] [Abstract][Full Text] [Related]
40. Temperature-modulated quenching of quantum dots covalently coupled to chain ends of poly(N-isopropyl acrylamide) brushes on gold. Tagit O; Tomczak N; Benetti EM; Cesa Y; Blum C; Subramaniam V; Herek JL; Julius Vancso G Nanotechnology; 2009 May; 20(18):185501. PubMed ID: 19420613 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]