These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
457 related articles for article (PubMed ID: 19101934)
1. Liquid-phase-based separation systems for depletion, prefractionation and enrichment of proteins in biological fluids for in-depth proteomics analysis. Jmeian Y; El Rassi Z Electrophoresis; 2009 Jan; 30(1):249-61. PubMed ID: 19101934 [TBL] [Abstract][Full Text] [Related]
3. Liquid phase based separation systems for depletion, prefractionation, and enrichment of proteins in biological fluids and matrices for in-depth proteomics analysis-An update covering the period 2011-2014. Puangpila C; Mayadunne E; El Rassi Z Electrophoresis; 2015 Jan; 36(1):238-52. PubMed ID: 25287967 [TBL] [Abstract][Full Text] [Related]
4. Multicolumn separation platform for simultaneous depletion and prefractionation prior to 2-DE for facilitating in-depth serum proteomics profiling. Jmeian Y; El Rassi Z J Proteome Res; 2009 Oct; 8(10):4592-603. PubMed ID: 19670910 [TBL] [Abstract][Full Text] [Related]
5. Liquid-phase based separation systems for depletion, prefractionation, and enrichment of proteins in biological fluids and matrices for in-depth proteomics analysis-An update covering the period 2014-2016. El Rassi Z; Puangpila C Electrophoresis; 2017 Jan; 38(1):150-161. PubMed ID: 27730653 [TBL] [Abstract][Full Text] [Related]
6. In-depth proteomic profiling of the normal human kidney glomerulus using two-dimensional protein prefractionation in combination with liquid chromatography-tandem mass spectrometry. Miyamoto M; Yoshida Y; Taguchi I; Nagasaka Y; Tasaki M; Zhang Y; Xu B; Nameta M; Sezaki H; Cuellar LM; Osawa T; Morishita H; Sekiyama S; Yaoita E; Kimura K; Yamamoto T J Proteome Res; 2007 Sep; 6(9):3680-90. PubMed ID: 17711322 [TBL] [Abstract][Full Text] [Related]
7. Clinical proteomics: liquid chromatography-mass spectrometry purification systems. Henry M; Meleady P Methods Mol Biol; 2011; 681():473-83. PubMed ID: 20978984 [TBL] [Abstract][Full Text] [Related]
8. Efficient prefractionation of low-abundance proteins in human plasma and construction of a two-dimensional map. Cho SY; Lee EY; Lee JS; Kim HY; Park JM; Kwon MS; Park YK; Lee HJ; Kang MJ; Kim JY; Yoo JS; Park SJ; Cho JW; Kim HS; Paik YK Proteomics; 2005 Aug; 5(13):3386-96. PubMed ID: 16047310 [TBL] [Abstract][Full Text] [Related]
9. Liquid-phase-based separation systems for depletion, prefractionation and enrichment of proteins in biological fluids and matrices for in-depth proteomics analysis--an update covering the period 2008-2011. Selvaraju S; Rassi ZE Electrophoresis; 2012 Jan; 33(1):74-88. PubMed ID: 22125262 [TBL] [Abstract][Full Text] [Related]
10. Use of multidimensional separation protocols for the purification of trace components in complex biological samples for proteomics analysis. Nice EC; Rothacker J; Weinstock J; Lim L; Catimel B J Chromatogr A; 2007 Oct; 1168(1-2):190-210; discussion 189. PubMed ID: 17597136 [TBL] [Abstract][Full Text] [Related]
11. Development of multidimensional liquid chromatography and application in proteomic analysis. Gao M; Qi D; Zhang P; Deng C; Zhang X Expert Rev Proteomics; 2010 Oct; 7(5):665-78. PubMed ID: 20973640 [TBL] [Abstract][Full Text] [Related]
12. Multidimensional chromatography coupled to mass spectrometry in analysing complex proteomics samples. Horvatovich P; Hoekman B; Govorukhina N; Bischoff R J Sep Sci; 2010 Jun; 33(10):1421-37. PubMed ID: 20486207 [TBL] [Abstract][Full Text] [Related]
13. Trends in sample preparation for classical and second generation proteomics. Cañas B; Piñeiro C; Calvo E; López-Ferrer D; Gallardo JM J Chromatogr A; 2007 Jun; 1153(1-2):235-58. PubMed ID: 17276441 [TBL] [Abstract][Full Text] [Related]
14. Contribution of protein fractionation to depth of analysis of the serum and plasma proteomes. Faca V; Pitteri SJ; Newcomb L; Glukhova V; Phanstiel D; Krasnoselsky A; Zhang Q; Struthers J; Wang H; Eng J; Fitzgibbon M; McIntosh M; Hanash S J Proteome Res; 2007 Sep; 6(9):3558-65. PubMed ID: 17696519 [TBL] [Abstract][Full Text] [Related]
15. Assessment approach for evaluating high abundance protein depletion methods for cerebrospinal fluid (CSF) proteomic analysis. Shores KS; Knapp DR J Proteome Res; 2007 Sep; 6(9):3739-51. PubMed ID: 17696521 [TBL] [Abstract][Full Text] [Related]
16. Depletion of the high-abundance plasma proteins. Fountoulakis M; Juranville JF; Jiang L; Avila D; Röder D; Jakob P; Berndt P; Evers S; Langen H Amino Acids; 2004 Dec; 27(3-4):249-59. PubMed ID: 15592754 [TBL] [Abstract][Full Text] [Related]
17. HPLC techniques for proteomics analysis--a short overview of latest developments. Mitulovic G; Mechtler K Brief Funct Genomic Proteomic; 2006 Dec; 5(4):249-60. PubMed ID: 17124183 [TBL] [Abstract][Full Text] [Related]
18. Application of a peptide-based PF2D platform for quantitative proteomics in disease biomarker discovery. Lee HJ; Kang MJ; Lee EY; Cho SY; Kim H; Paik YK Proteomics; 2008 Aug; 8(16):3371-81. PubMed ID: 18651672 [TBL] [Abstract][Full Text] [Related]
19. Strategies for revealing lower abundance proteins in two-dimensional protein maps. Ahmed N; Rice GE J Chromatogr B Analyt Technol Biomed Life Sci; 2005 Feb; 815(1-2):39-50. PubMed ID: 15652797 [TBL] [Abstract][Full Text] [Related]
20. A robust method for proteomic characterization of mouse cartilage using solubility-based sequential fractionation and two-dimensional gel electrophoresis. Wilson R; Bateman JF Matrix Biol; 2008 Oct; 27(8):709-12. PubMed ID: 18762257 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]