These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

267 related articles for article (PubMed ID: 19102522)

  • 1. Extrapolation to the complete-basis-set limit and the implications of avoided crossings: The X 1Sigma(g)+, B 1Delta(g), and B' 1Sigma(g)+ states of C2.
    Varandas AJ
    J Chem Phys; 2008 Dec; 129(23):234103. PubMed ID: 19102522
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Generalized uniform singlet- and triplet-pair extrapolation of the correlation energy to the one electron basis set limit.
    Varandas AJ
    J Phys Chem A; 2008 Feb; 112(8):1841-50. PubMed ID: 18247588
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Extrapolating to the one-electron basis-set limit in electronic structure calculations.
    Varandas AJ
    J Chem Phys; 2007 Jun; 126(24):244105. PubMed ID: 17614535
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An ab initio study of the lowest electronic states of yttrium dicarbide, YC2.
    Puzzarini C; Peterson KA
    J Chem Phys; 2005 Feb; 122(8):84323. PubMed ID: 15836055
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Singlet-triplet energy splitting and excited states of phenylnitrene.
    Winkler M
    J Phys Chem A; 2008 Sep; 112(37):8649-53. PubMed ID: 18714972
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ab initio investigation of the electronic structure and bonding of BH, BH(-), and HBBH molecules.
    Miliordos E; Mavridis A
    J Chem Phys; 2008 Apr; 128(14):144308. PubMed ID: 18412446
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Extrapolating to the one-electron basis set limit in polarizability calculations.
    Junqueira GM; Varandas AJ
    J Phys Chem A; 2008 Oct; 112(41):10413-9. PubMed ID: 18808104
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multireference configuration interaction study of the electronic states of ZrC.
    Denis PA; Balasubramanian K
    J Chem Phys; 2006 May; 124(17):174312. PubMed ID: 16689576
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The multiconfigurational-reference internally contracted configuration interaction/complete basis set study of the excited states of the trifluoride anion F3(-).
    Czernek J; Zivný O
    J Chem Phys; 2008 Nov; 129(19):194305. PubMed ID: 19026058
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Accurate ab initio potential energy curves for the classic Li-F ionic-covalent interaction by extrapolation to the complete basis set limit and modeling of the radial nonadiabatic coupling.
    Varandas AJ
    J Chem Phys; 2009 Sep; 131(12):124128. PubMed ID: 19791873
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Accurate ab initio double many-body expansion potential energy surface for ground-state H2S by extrapolation to the complete basis set limit.
    Song YZ; Varandas AJ
    J Chem Phys; 2009 Apr; 130(13):134317. PubMed ID: 19355742
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Theory of the photodissociation of ozone in the Hartley continuum: potential energy surfaces, conical intersections, and photodissociation dynamics.
    Baloïtcha E; Balint-Kurti GG
    J Chem Phys; 2005 Jul; 123(1):014306. PubMed ID: 16035834
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dissociation of ground and nsigma* states of CF3Cl using multireference configuration interaction with singles and doubles and with multireference average quadratic coupled cluster extensivity corrections.
    Lucena JR; Ventura E; do Monte SA; Araújo RC; Ramos MN; Fausto R
    J Chem Phys; 2007 Oct; 127(16):164320. PubMed ID: 17979351
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Density functional theory and multireference configuration interaction studies on low-lying excited states of TiO2.
    Grein F
    J Chem Phys; 2007 Jan; 126(3):034313. PubMed ID: 17249877
    [TBL] [Abstract][Full Text] [Related]  

  • 15. First principles study of the electronic structure and bonding of Mn2.
    Tzeli D; Miranda U; Kaplan IG; Mavridis A
    J Chem Phys; 2008 Oct; 129(15):154310. PubMed ID: 19045196
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Theoretical study of electronic states of N22+in an intense radiation field.
    Jiang W; Khait YG; Hoffmann MR
    J Chem Phys; 2007 Oct; 127(16):164308. PubMed ID: 17979339
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ab initio calculation of the electronic structures of the (7)Sigma+ ground and A (7)Pi and a (5)Sigma+ excited states of MnH.
    Tomonari M; Nagashima U; Hirano T
    J Chem Phys; 2009 Apr; 130(15):154105. PubMed ID: 19388734
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A theoretical study on the electronic states and O-loss photodissociation of the NO2(+) ion.
    Chang HB; Huang MB
    Chemphyschem; 2009 Feb; 10(3):582-9. PubMed ID: 19156650
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Full configuration interaction calculation of BeH adiabatic states.
    Pitarch-Ruiz J; Sánchez-Marin J; Velasco AM; Martin I
    J Chem Phys; 2008 Aug; 129(5):054310. PubMed ID: 18698903
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Potential energy surface for ground-state H2S via scaling of the external correlation, comparison with extrapolation to complete basis set limit, and use in reaction dynamics.
    Song YZ; Caridade PJ; Varandas AJ
    J Phys Chem A; 2009 Aug; 113(32):9213-9. PubMed ID: 19624111
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.