These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

84 related articles for article (PubMed ID: 19102713)

  • 1. A Bayesian approach to gene-gene and gene-environment interactions in chronic fatigue syndrome.
    Lin E; Hsu SY
    Pharmacogenomics; 2009 Jan; 10(1):35-42. PubMed ID: 19102713
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gene-gene and gene-environment interactions in interferon therapy for chronic hepatitis C.
    Lin E; Hwang Y; Chen EY
    Pharmacogenomics; 2007 Oct; 8(10):1327-35. PubMed ID: 17979507
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bayesian biomarker identification based on marker-expression proteomics data.
    Bhattacharjee M; Botting CH; Sillanpää MJ
    Genomics; 2008 Dec; 92(6):384-92. PubMed ID: 18657605
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An integrated approach to infer causal associations among gene expression, genotype variation, and disease.
    Lee E; Cho S; Kim K; Park T
    Genomics; 2009 Oct; 94(4):269-77. PubMed ID: 19540336
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bayesian variable and model selection methods for genetic association studies.
    Fridley BL
    Genet Epidemiol; 2009 Jan; 33(1):27-37. PubMed ID: 18618760
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prediction of complex human diseases from pathway-focused candidate markers by joint estimation of marker effects: case of chronic fatigue syndrome.
    Bhattacharjee M; Rajeevan MS; Sillanpää MJ
    Hum Genomics; 2015 Jun; 9(1):8. PubMed ID: 26063326
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mapping the genetic architecture of complex traits in experimental populations.
    Yang J; Zhu J; Williams RW
    Bioinformatics; 2007 Jun; 23(12):1527-36. PubMed ID: 17459962
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Glucocorticoid receptor polymorphisms and haplotypes associated with chronic fatigue syndrome.
    Rajeevan MS; Smith AK; Dimulescu I; Unger ER; Vernon SD; Heim C; Reeves WC
    Genes Brain Behav; 2007 Mar; 6(2):167-76. PubMed ID: 16740143
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Bayesian approach to reconstructing genetic regulatory networks with hidden factors.
    Beal MJ; Falciani F; Ghahramani Z; Rangel C; Wild DL
    Bioinformatics; 2005 Feb; 21(3):349-56. PubMed ID: 15353451
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bayesian inference of epistatic interactions in case-control studies.
    Zhang Y; Liu JS
    Nat Genet; 2007 Sep; 39(9):1167-73. PubMed ID: 17721534
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gene expression profile exploration of a large dataset on chronic fatigue syndrome.
    Fang H; Xie Q; Boneva R; Fostel J; Perkins R; Tong W
    Pharmacogenomics; 2006 Apr; 7(3):429-40. PubMed ID: 16610953
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A comparison of classification methods for predicting Chronic Fatigue Syndrome based on genetic data.
    Huang LC; Hsu SY; Lin E
    J Transl Med; 2009 Sep; 7():81. PubMed ID: 19772600
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bayesian analysis of the linear reaction norm model with unknown covariates.
    Su G; Madsen P; Lund MS; Sorensen D; Korsgaard IR; Jensen J
    J Anim Sci; 2006 Jul; 84(7):1651-7. PubMed ID: 16775048
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bayesian mapping of genotype x expression interactions in quantitative and qualitative traits.
    Hoti F; Sillanpää MJ
    Heredity (Edinb); 2006 Jul; 97(1):4-18. PubMed ID: 16670709
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Supervised selection of single nucleotide polymorphisms in chronic fatigue syndrome.
    Cifuentes RA; Barreto E
    Biomedica; 2011; 31(4):613-21. PubMed ID: 22674373
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The challenge of integrating disparate high-content data: epidemiological, clinical and laboratory data collected during an in-hospital study of chronic fatigue syndrome.
    Vernon SD; Reeves WC
    Pharmacogenomics; 2006 Apr; 7(3):345-54. PubMed ID: 16610945
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bayesian variable selection in multinomial probit models to identify molecular signatures of disease stage.
    Sha N; Vannucci M; Tadesse MG; Brown PJ; Dragoni I; Davies N; Roberts TC; Contestabile A; Salmon M; Buckley C; Falciani F
    Biometrics; 2004 Sep; 60(3):812-9. PubMed ID: 15339306
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Examining gene-environment interactions in comorbid depressive and disruptive behavior disorders using a Bayesian approach.
    Adrian M; Kiff C; Glazner C; Kohen R; Tracy JH; Zhou C; McCauley E; Vander Stoep A
    J Psychiatr Res; 2015 Sep; 68():125-33. PubMed ID: 26228411
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biomedicine. Genes and chronic fatigue: how strong is the evidence?
    Kaiser J
    Science; 2006 May; 312(5774):669-71. PubMed ID: 16675668
    [No Abstract]   [Full Text] [Related]  

  • 20. Identifying interacting SNPs using Monte Carlo logic regression.
    Kooperberg C; Ruczinski I
    Genet Epidemiol; 2005 Feb; 28(2):157-70. PubMed ID: 15532037
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.