These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 19102736)

  • 21. Enhanced performance in prediction of protein active sites with THEMATICS and support vector machines.
    Tong W; Williams RJ; Wei Y; Murga LF; Ko J; Ondrechen MJ
    Protein Sci; 2008 Feb; 17(2):333-41. PubMed ID: 18096640
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Exploiting three kinds of interface propensities to identify protein binding sites.
    Liu B; Wang X; Lin L; Dong Q; Wang X
    Comput Biol Chem; 2009 Aug; 33(4):303-11. PubMed ID: 19646926
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Review and comparative assessment of sequence-based predictors of protein-binding residues.
    Zhang J; Kurgan L
    Brief Bioinform; 2018 Sep; 19(5):821-837. PubMed ID: 28334258
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Predicting RNA-binding sites of proteins using support vector machines and evolutionary information.
    Cheng CW; Su EC; Hwang JK; Sung TY; Hsu WL
    BMC Bioinformatics; 2008 Dec; 9 Suppl 12(Suppl 12):S6. PubMed ID: 19091029
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Prediction of interface residues in protein-protein complexes by a consensus neural network method: test against NMR data.
    Chen H; Zhou HX
    Proteins; 2005 Oct; 61(1):21-35. PubMed ID: 16080151
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Computational identification of ubiquitylation sites from protein sequences.
    Tung CW; Ho SY
    BMC Bioinformatics; 2008 Jul; 9():310. PubMed ID: 18625080
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Predicting protein residue-residue contacts using random forests and deep networks.
    Luttrell J; Liu T; Zhang C; Wang Z
    BMC Bioinformatics; 2019 Mar; 20(Suppl 2):100. PubMed ID: 30871477
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Prediction of RNA binding sites in a protein using SVM and PSSM profile.
    Kumar M; Gromiha MM; Raghava GP
    Proteins; 2008 Apr; 71(1):189-94. PubMed ID: 17932917
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Sequence-based prediction of protein-binding sites in DNA: comparative study of two SVM models.
    Park B; Im J; Tuvshinjargal N; Lee W; Han K
    Comput Methods Programs Biomed; 2014 Nov; 117(2):158-67. PubMed ID: 25113160
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Computational prediction of heme-binding residues by exploiting residue interaction network.
    Liu R; Hu J
    PLoS One; 2011; 6(10):e25560. PubMed ID: 21991319
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Prediction of carbohydrate binding sites on protein surfaces with 3-dimensional probability density distributions of interacting atoms.
    Tsai KC; Jian JW; Yang EW; Hsu PC; Peng HP; Chen CT; Chen JB; Chang JY; Hsu WL; Yang AS
    PLoS One; 2012; 7(7):e40846. PubMed ID: 22848404
    [TBL] [Abstract][Full Text] [Related]  

  • 32. BindML/BindML+: Detecting Protein-Protein Interaction Interface Propensity from Amino Acid Substitution Patterns.
    Wei Q; La D; Kihara D
    Methods Mol Biol; 2017; 1529():279-289. PubMed ID: 27914057
    [TBL] [Abstract][Full Text] [Related]  

  • 33. PIER: protein interface recognition for structural proteomics.
    Kufareva I; Budagyan L; Raush E; Totrov M; Abagyan R
    Proteins; 2007 May; 67(2):400-17. PubMed ID: 17299750
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Predicting the Effect of Mutations on Protein-Protein Binding Interactions through Structure-Based Interface Profiles.
    Brender JR; Zhang Y
    PLoS Comput Biol; 2015 Oct; 11(10):e1004494. PubMed ID: 26506533
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Inferring protein-protein interacting sites using residue conservation and evolutionary information.
    Wang B; Wong HS; Huang DS
    Protein Pept Lett; 2006; 13(10):999-1005. PubMed ID: 17168822
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effect of training datasets on support vector machine prediction of protein-protein interactions.
    Lo SL; Cai CZ; Chen YZ; Chung MC
    Proteomics; 2005 Mar; 5(4):876-84. PubMed ID: 15717327
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Structural descriptor database: a new tool for sequence-based functional site prediction.
    Bernardes JS; Fernandez JH; Vasconcelos AT
    BMC Bioinformatics; 2008 Nov; 9():492. PubMed ID: 19032768
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Identification of interface residues in protease-inhibitor and antigen-antibody complexes: a support vector machine approach.
    Yan C; Honavar V; Dobbs D
    Neural Comput Appl; 2004 Jun; 13(2):123-129. PubMed ID: 20526429
    [TBL] [Abstract][Full Text] [Related]  

  • 39. ProNA2020 predicts protein-DNA, protein-RNA, and protein-protein binding proteins and residues from sequence.
    Qiu J; Bernhofer M; Heinzinger M; Kemper S; Norambuena T; Melo F; Rost B
    J Mol Biol; 2020 Mar; 432(7):2428-2443. PubMed ID: 32142788
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Prediction of Protein-ATP Binding Residues Based on Ensemble of Deep Convolutional Neural Networks and LightGBM Algorithm.
    Song J; Liu G; Jiang J; Zhang P; Liang Y
    Int J Mol Sci; 2021 Jan; 22(2):. PubMed ID: 33477866
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.