These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
164 related articles for article (PubMed ID: 1910283)
1. Nitrate transport and its regulation by O2 in Pseudomonas aeruginosa. Hernandez D; Dias FM; Rowe JJ Arch Biochem Biophys; 1991 Apr; 286(1):159-63. PubMed ID: 1910283 [TBL] [Abstract][Full Text] [Related]
2. Denitrifying Pseudomonas aeruginosa: some parameters of growth and active transport. Williams DR; Rowe JJ; Romero P; Eagon RG Appl Environ Microbiol; 1978 Aug; 36(2):257-63. PubMed ID: 100056 [TBL] [Abstract][Full Text] [Related]
3. Oxygen regulation of nitrate uptake in denitrifying Pseudomonas aeruginosa. Hernandez D; Rowe JJ Appl Environ Microbiol; 1987 Apr; 53(4):745-50. PubMed ID: 3107469 [TBL] [Abstract][Full Text] [Related]
4. Cellular regulation of nitrate uptake in denitrifying Flexibacter canadensis. Wu Q; Knowles R Can J Microbiol; 1994 Jul; 40(7):576-82. PubMed ID: 8076252 [TBL] [Abstract][Full Text] [Related]
5. Inhibition by phenylglyoxal of nitrate transport in Paracoccus denitrificans: a comparison with the effect of a protonophorous uncoupler. Kucera I Arch Biochem Biophys; 2003 Jan; 409(2):327-34. PubMed ID: 12504899 [TBL] [Abstract][Full Text] [Related]
6. Regulation and energization of nitrate transport in a halophilic Pseudomonas stutzeri. Dias FM; Ventullo RM; Rowe JJ Biochem Biophys Res Commun; 1990 Jan; 166(1):424-30. PubMed ID: 2154208 [TBL] [Abstract][Full Text] [Related]
7. Degradation of n-hexadecane and its metabolites by Pseudomonas aeruginosa under microaerobic and anaerobic denitrifying conditions. Chayabutra C; Ju LK Appl Environ Microbiol; 2000 Feb; 66(2):493-8. PubMed ID: 10653709 [TBL] [Abstract][Full Text] [Related]
8. Nitrite causes reversible inactivation of nitrate reductase in the yeast Hansenula anomala. González C; González G; Avila J; Pérez MD; Brito N; Siverio JM Microbiology (Reading); 1994 Oct; 140 ( Pt 10)():2633-7. PubMed ID: 8000533 [TBL] [Abstract][Full Text] [Related]
9. Relationship between nitrite reduction and active phosphate uptake in the phosphate-accumulating denitrifier Pseudomonas sp. strain JR 12. Barak Y; van Rijn J Appl Environ Microbiol; 2000 Dec; 66(12):5236-40. PubMed ID: 11097896 [TBL] [Abstract][Full Text] [Related]
10. Involvement of NarK1 and NarK2 proteins in transport of nitrate and nitrite in the denitrifying bacterium Pseudomonas aeruginosa PAO1. Sharma V; Noriega CE; Rowe JJ Appl Environ Microbiol; 2006 Jan; 72(1):695-701. PubMed ID: 16391109 [TBL] [Abstract][Full Text] [Related]
11. Isolation and analysis of mutants of Pseudomonas aeruginosa unable to assimilate nitrate. Sias SR; Ingraham JL Arch Microbiol; 1979 Sep; 122(3):263-70. PubMed ID: 120727 [TBL] [Abstract][Full Text] [Related]
12. The anaerobic regulatory network required for Pseudomonas aeruginosa nitrate respiration. Schreiber K; Krieger R; Benkert B; Eschbach M; Arai H; Schobert M; Jahn D J Bacteriol; 2007 Jun; 189(11):4310-4. PubMed ID: 17400734 [TBL] [Abstract][Full Text] [Related]
13. Regulation of alternate peripheral pathways of glucose catabolism during aerobic and anaerobic growth of Pseudomonas aeruginosa. Hunt JC; Phibbs PV J Bacteriol; 1983 May; 154(2):793-802. PubMed ID: 6404887 [TBL] [Abstract][Full Text] [Related]
14. Effects of oxygen, pH and nitrate concentration on denitrification by Pseudomonas species. Thomas KL; Lloyd D; Boddy L FEMS Microbiol Lett; 1994 May; 118(1-2):181-6. PubMed ID: 8013877 [TBL] [Abstract][Full Text] [Related]
15. The Pseudomonas aeruginosa universal stress protein PA4352 is essential for surviving anaerobic energy stress. Boes N; Schreiber K; Härtig E; Jaensch L; Schobert M J Bacteriol; 2006 Sep; 188(18):6529-38. PubMed ID: 16952944 [TBL] [Abstract][Full Text] [Related]
16. Artificial control of nitrate respiration through the lac promoter permits the assessment of oxygen-mediated posttranslational regulation of the nar operon in Pseudomonas aeruginosa. Noriega CE; Sharma V; Rowe JJ J Bacteriol; 2007 Sep; 189(17):6501-5. PubMed ID: 17616601 [TBL] [Abstract][Full Text] [Related]
17. Studies on phosphate transport in Escherichia coli. II. Effects of metabolic inhibitors and divalent cations. Rae AS; Strickland KP Biochim Biophys Acta; 1976 May; 433(3):564-82. PubMed ID: 132192 [TBL] [Abstract][Full Text] [Related]
18. Respiration-linked proton translocation coupled to anaerobic reduction of manganese(IV) and iron(III) in Shewanella putrefaciens MR-1. Myers CR; Nealson KH J Bacteriol; 1990 Nov; 172(11):6232-8. PubMed ID: 2172208 [TBL] [Abstract][Full Text] [Related]
19. Ni(2+) transport and accumulation in Rhodospirillum rubrum. Watt RK; Ludden PW J Bacteriol; 1999 Aug; 181(15):4554-60. PubMed ID: 10419953 [TBL] [Abstract][Full Text] [Related]
20. Oxygen regulation of nitrate transport by diversion of electron flow in Escherichia coli. Denis KS; Dias FM; Rowe JJ J Biol Chem; 1990 Oct; 265(30):18095-7. PubMed ID: 2170403 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]