These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Nucleotide transport in Rhodobacter capsulatus. Carmeli C; Lifshitz Y J Bacteriol; 1989 Dec; 171(12):6521-5. PubMed ID: 2512281 [TBL] [Abstract][Full Text] [Related]
3. Sidedness of membrane structures in Rhodopseudomonas sphaeroides. Electrochemical titration of the spectrum changes of carotenoid in spheroplasts, spheroplast membrane vesicles and chromatophores. Matsuura K; Nishimura M Biochim Biophys Acta; 1977 Mar; 459(3):483-91. PubMed ID: 300247 [TBL] [Abstract][Full Text] [Related]
4. Reduction of potassium tellurite to elemental tellurium and its effect on the plasma membrane redox components of the facultative phototroph Rhodobacter capsulatus. Borsetti F; Borghese R; Francia F; Randi MR; Fedi S; Zannoni D Protoplasma; 2003 May; 221(1-2):153-61. PubMed ID: 12768353 [TBL] [Abstract][Full Text] [Related]
5. Nucleotide exchange in membrane vesicles from the photosynthetic bacterium Rhodopseudomonas capsulata. Hochman A; Bittan R; Carmeli C Arch Biochem Biophys; 1981 Oct; 211(1):413-8. PubMed ID: 7305378 [No Abstract] [Full Text] [Related]
6. Coupling of proton flow to ATP synthesis in Rhodobacter capsulatus: F(0)F(1)-ATP synthase is absent from about half of chromatophores. Feniouk BA; Cherepanov DA; Junge W; Mulkidjanian AY Biochim Biophys Acta; 2001 Nov; 1506(3):189-203. PubMed ID: 11779552 [TBL] [Abstract][Full Text] [Related]
7. TRAP transporters: a new family of periplasmic solute transport systems encoded by the dctPQM genes of Rhodobacter capsulatus and by homologs in diverse gram-negative bacteria. Forward JA; Behrendt MC; Wyborn NR; Cross R; Kelly DJ J Bacteriol; 1997 Sep; 179(17):5482-93. PubMed ID: 9287004 [TBL] [Abstract][Full Text] [Related]
8. Comparison, by freeze-fracture electron microscopy, of chromatophores, spheroplast-derived membrane vesicles, and whole cells of Rhodopseudomonas sphaeroides. Lommen MA; Takemoto J J Bacteriol; 1978 Nov; 136(2):730-41. PubMed ID: 309467 [TBL] [Abstract][Full Text] [Related]
9. Comparative characterization of SecA from the alpha-subclass purple bacterium Rhodobacter capsulatus and Escherichia coli reveals differences in membrane and precursor specificity. Helde R; Wiesler B; Wachter E; Neubüser A; Hoffschulte HK; Hengelage T; Schimz KL; Stuart RA; Müller M J Bacteriol; 1997 Jun; 179(12):4003-12. PubMed ID: 9190818 [TBL] [Abstract][Full Text] [Related]
10. Chromatophore vesicles of Rhodobacter capsulatus contain on average one F(O)F(1)-ATP synthase each. Feniouk BA; Cherepanov DA; Voskoboynikova NE; Mulkidjanian AY; Junge W Biophys J; 2002 Mar; 82(3):1115-22. PubMed ID: 11867431 [TBL] [Abstract][Full Text] [Related]
11. Transport of amino acids in membrane vesicles of Rhodopseudomonas spheroides energized by respiratory and cyclic electron flow. Hellingwerf KJ; Michels PA; Dorpema JW; Konings WN Eur J Biochem; 1975 Jul; 55(2):397-406. PubMed ID: 1081452 [TBL] [Abstract][Full Text] [Related]
12. Assessment of total catalytic sites and the nature of bound nucleotide participation in photophosphorylation. Rosen G; Gresser M; Vinkler C; Boyer PD J Biol Chem; 1979 Nov; 254(21):10654-61. PubMed ID: 500602 [No Abstract] [Full Text] [Related]
13. Heterogeneity of photosynthetic membranes from Rhodobacter capsulatus: size dispersion and ATP synthase distribution. Gubellini F; Francia F; Turina P; Lévy D; Venturoli G; Melandri BA Biochim Biophys Acta; 2007 Nov; 1767(11):1340-52. PubMed ID: 17961501 [TBL] [Abstract][Full Text] [Related]
14. Composition and development of the bacterial photosynthetic apparatus. Oelze J Subcell Biochem; 1981; 8():1-73. PubMed ID: 7032006 [No Abstract] [Full Text] [Related]
15. Unreliability of carotenoid electrochromism for the measure of electrical potential differences induced by ATP hydrolysis in bacterial chromatophores. Crimi M; Fregni V; Altimari A; Melandri BA FEBS Lett; 1995 Jun; 367(2):167-72. PubMed ID: 7796913 [TBL] [Abstract][Full Text] [Related]
16. Modulation of proton pumping efficiency in bacterial ATP synthases. Turina P; Rebecchi A; D'Alessandro M; Anefors S; Melandri BA Biochim Biophys Acta; 2006; 1757(5-6):320-5. PubMed ID: 16765908 [TBL] [Abstract][Full Text] [Related]
17. Orientation of chromatophores and spheroplast-derived membrane vesicles of Rhodopseudomonas sphaeroides: analysis by localization of enzyme activities. Takemoto J; Bachmann RC Arch Biochem Biophys; 1979 Jul; 195(2):526-34. PubMed ID: 157720 [No Abstract] [Full Text] [Related]
18. Phosphorylation of nucleotides bound to chloroplast membranes and their role in photophosphorylation. Aflafo C; Shavit N Biochim Biophys Acta; 1976 Sep; 440(3):522-30. PubMed ID: 963042 [TBL] [Abstract][Full Text] [Related]
19. Thiophosphate analogs of ADP and ATP as substrates in partial reactions of energy conversion in chloroplasts. Strotmann H; Bickel-Sandkötter S; Edelmann K; Eckstein F; Schlimme E; Boos KS; Lüstorff J Biochim Biophys Acta; 1979 Jan; 545(1):122-30. PubMed ID: 758935 [No Abstract] [Full Text] [Related]
20. Physiological ligands ADP and Pi modulate the degree of intrinsic coupling in the ATP synthase of the photosynthetic bacterium Rhodobacter capsulatus. Turina P; Giovannini D; Gubellini F; Melandri BA Biochemistry; 2004 Aug; 43(34):11126-34. PubMed ID: 15323572 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]