BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

349 related articles for article (PubMed ID: 19103314)

  • 1. Tracking of bone mass from childhood to adolescence and factors that predict deviation from tracking.
    Foley S; Quinn S; Jones G
    Bone; 2009 May; 44(5):752-7. PubMed ID: 19103314
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High bone density in young Hutterite children.
    Wey CL; Beare T; Biskeborn K; Binkley T; Arneson L; Specker B
    Bone; 2009 Mar; 44(3):454-60. PubMed ID: 19095089
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tracking of Areal Bone Mineral Density From Age Eight to Young Adulthood and Factors Associated With Deviation From Tracking: A 17-Year Prospective Cohort Study.
    Yang Y; Wu F; Winzenberg T; Jones G
    J Bone Miner Res; 2018 May; 33(5):832-839. PubMed ID: 29232481
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Body composition and bone mass in survivors of childhood cancer.
    Muszynska-Roslan K; Konstantynowicz J; Krawczuk-Rybak M; Protas P
    Pediatr Blood Cancer; 2007 Feb; 48(2):200-4. PubMed ID: 16602116
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Subjective and objective measures of physical activity in relationship to bone mineral content during late childhood: the Iowa Bone Development Study.
    Janz KF; Medema-Johnson HC; Letuchy EM; Burns TL; Gilmore JM; Torner JC; Willing M; Levy SM
    Br J Sports Med; 2008 Aug; 42(8):658-63. PubMed ID: 18603581
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Relationships of acylated and des-acyl ghrelin levels to bone mineralization in obese children and adolescents.
    Pacifico L; Anania C; Poggiogalle E; Osborn JF; Prossomariti G; Martino F; Chiesa C
    Bone; 2009 Aug; 45(2):274-9. PubMed ID: 19393347
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Relation between body composition and age in healthy Japanese subjects.
    Ito H; Ohshima A; Ohto N; Ogasawara M; Tsuzuki M; Takao K; Hijii C; Tanaka H; Nishioka K
    Eur J Clin Nutr; 2001 Jun; 55(6):462-70. PubMed ID: 11423923
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Current physical activity is related to bone mineral density in males but not in females.
    Högström M; Nordström A; Alfredson H; Lorentzon R; Thorsen K; Nordström P
    Int J Sports Med; 2007 May; 28(5):431-6. PubMed ID: 17111323
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Positive, site-specific associations between bone mineral status, fitness, and time spent at high-impact activities in 16- to 18-year-old boys.
    Ginty F; Rennie KL; Mills L; Stear S; Jones S; Prentice A
    Bone; 2005 Jan; 36(1):101-10. PubMed ID: 15664008
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prediction models for evaluation of total-body bone mass with dual-energy X-ray absorptiometry among children and adolescents.
    Horlick M; Wang J; Pierson RN; Thornton JC
    Pediatrics; 2004 Sep; 114(3):e337-45. PubMed ID: 15342895
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development and reproducibility of the bone loading history questionnaire.
    Dolan SH; Williams DP; Ainsworth BE; Shaw JM
    Med Sci Sports Exerc; 2006 Jun; 38(6):1121-31. PubMed ID: 16775555
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Bone mineral and body composition analysis of whole body in 292 normal subjects assessed by dual X-ray absorptiometry].
    Qin MW; Yu W; Xu L; Tian JP; Xing XP; Meng XW; Yan HZ; Ge QS
    Zhongguo Yi Xue Ke Xue Yuan Xue Bao; 2003 Feb; 25(1):66-9. PubMed ID: 12905612
    [TBL] [Abstract][Full Text] [Related]  

  • 13. More broken bones: a 4-year double cohort study of young girls with and without distal forearm fractures.
    Goulding A; Jones IE; Taylor RW; Manning PJ; Williams SM
    J Bone Miner Res; 2000 Oct; 15(10):2011-8. PubMed ID: 11028455
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Muscular development and physical activity as major determinants of femoral bone mass acquisition during growth.
    Vicente-Rodriguez G; Ara I; Perez-Gomez J; Dorado C; Calbet JA
    Br J Sports Med; 2005 Sep; 39(9):611-6. PubMed ID: 16118297
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Age- and gender-related changes in body composition in Japanese subjects.
    Tsunenari T; Tsutsumi M; Ohno K; Yamamoto Y; Kawakatsu M; Shimogaki K; Negishi H; Sugimoto T; Fukase M; Fujita T
    J Bone Miner Res; 1993 Apr; 8(4):397-402. PubMed ID: 8475789
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Self-reported lifetime physical activity and areal bone mineral density in healthy postmenopausal women: the importance of teenage activity.
    Rideout CA; McKay HA; Barr SI
    Calcif Tissue Int; 2006 Oct; 79(4):214-22. PubMed ID: 17033722
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Change in lean body mass is a major determinant of change in areal bone mineral density of the proximal femur: a 12-year observational study.
    Liu-Ambrose T; Kravetsky L; Bailey D; Sherar L; Mundt C; Baxter-Jones A; Khan KM; McKay HA
    Calcif Tissue Int; 2006 Sep; 79(3):145-51. PubMed ID: 16969588
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Relationships of appendicular LMI and total body LMI to bone mass and physical activity levels in a birth cohort of New Zealand five-year olds.
    Goulding A; Taylor RW; Grant AM; Jones S; Taylor BJ; Williams SM
    Bone; 2009 Sep; 45(3):455-9. PubMed ID: 19450717
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Changes in body composition as determinants of longitudinal changes in bone mineral measures in 8 to 26-year-old female twins.
    Young D; Hopper JL; Macinnis RJ; Nowson CA; Hoang NH; Wark JD
    Osteoporos Int; 2001; 12(6):506-15. PubMed ID: 11446568
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bone changes in adolescent girls with anorexia nervosa.
    Stone M; Briody J; Kohn MR; Clarke S; Madden S; Cowell CT
    J Adolesc Health; 2006 Dec; 39(6):835-41. PubMed ID: 17116513
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.