BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 19103605)

  • 21. Channelrhodopsins: a bioinformatics perspective.
    Del Val C; Royuela-Flor J; Milenkovic S; Bondar AN
    Biochim Biophys Acta; 2014 May; 1837(5):643-55. PubMed ID: 24252597
    [TBL] [Abstract][Full Text] [Related]  

  • 22. C2 domain protein MIN1 promotes eyespot organization in Chlamydomonas reinhardtii.
    Mittelmeier TM; Berthold P; Danon A; Lamb MR; Levitan A; Rice ME; Dieckmann CL
    Eukaryot Cell; 2008 Dec; 7(12):2100-12. PubMed ID: 18849467
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Re-introduction of transmembrane serine residues reduce the minimum pore diameter of channelrhodopsin-2.
    Richards R; Dempski RE
    PLoS One; 2012; 7(11):e50018. PubMed ID: 23185520
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Light activation of channelrhodopsin-2 in excitable cells of Caenorhabditis elegans triggers rapid behavioral responses.
    Nagel G; Brauner M; Liewald JF; Adeishvili N; Bamberg E; Gottschalk A
    Curr Biol; 2005 Dec; 15(24):2279-84. PubMed ID: 16360690
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Modeling light-induced currents in the eye of Chlamydomonas reinhardtii.
    Gradmann D; Ehlenbeck S; Hegemann P
    J Membr Biol; 2002 Sep; 189(2):93-104. PubMed ID: 12235485
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Characterization of a highly efficient blue-shifted channelrhodopsin from the marine alga Platymonas subcordiformis.
    Govorunova EG; Sineshchekov OA; Li H; Janz R; Spudich JL
    J Biol Chem; 2013 Oct; 288(41):29911-22. PubMed ID: 23995841
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Intramolecular proton transfer in channelrhodopsins.
    Sineshchekov OA; Govorunova EG; Wang J; Li H; Spudich JL
    Biophys J; 2013 Feb; 104(4):807-17. PubMed ID: 23442959
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Multifactorial in vivo regulation of the photoreceptor channelrhodopsin-1 abundance.
    Wolfram M; Greif A; Sizova I; Baidukova O; Hegemann P; Kreimer G
    Plant Cell Environ; 2023 Sep; 46(9):2778-2793. PubMed ID: 37381151
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Glutamate residue 90 in the predicted transmembrane domain 2 is crucial for cation flux through channelrhodopsin 2.
    Ruffert K; Himmel B; Lall D; Bamann C; Bamberg E; Betz H; Eulenburg V
    Biochem Biophys Res Commun; 2011 Jul; 410(4):737-43. PubMed ID: 21683688
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Archaeal-type rhodopsins in Chlamydomonas: model structure and intracellular localization.
    Suzuki T; Yamasaki K; Fujita S; Oda K; Iseki M; Yoshida K; Watanabe M; Daiyasu H; Toh H; Asamizu E; Tabata S; Miura K; Fukuzawa H; Nakamura S; Takahashi T
    Biochem Biophys Res Commun; 2003 Feb; 301(3):711-7. PubMed ID: 12565839
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Characterization of engineered channelrhodopsin variants with improved properties and kinetics.
    Lin JY; Lin MZ; Steinbach P; Tsien RY
    Biophys J; 2009 Mar; 96(5):1803-14. PubMed ID: 19254539
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Formation Mechanism of Ion Channel in Channelrhodopsin-2: Molecular Dynamics Simulation and Steering Molecular Dynamics Simulations.
    Yang T; Zhang W; Cheng J; Nie Y; Xin Q; Yuan S; Dou Y
    Int J Mol Sci; 2019 Aug; 20(15):. PubMed ID: 31382458
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Exciton circular dichroism in channelrhodopsin.
    Pescitelli G; Kato HE; Oishi S; Ito J; Maturana AD; Nureki O; Woody RW
    J Phys Chem B; 2014 Oct; 118(41):11873-85. PubMed ID: 25247388
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Enhancement of the long-wavelength sensitivity of optogenetic microbial rhodopsins by 3,4-dehydroretinal.
    Sineshchekov OA; Govorunova EG; Wang J; Spudich JL
    Biochemistry; 2012 Jun; 51(22):4499-506. PubMed ID: 22577956
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Involvement of glutamate 97 in ion influx through photo-activated channelrhodopsin-2.
    Tanimoto S; Sugiyama Y; Takahashi T; Ishizuka T; Yawo H
    Neurosci Res; 2013 Jan; 75(1):13-22. PubMed ID: 22664343
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Channelrhodopsin-1: a light-gated proton channel in green algae.
    Nagel G; Ollig D; Fuhrmann M; Kateriya S; Musti AM; Bamberg E; Hegemann P
    Science; 2002 Jun; 296(5577):2395-8. PubMed ID: 12089443
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Bioinformatic and mutational analysis of channelrhodopsin-2 protein cation-conducting pathway.
    Plazzo AP; De Franceschi N; Da Broi F; Zonta F; Sanasi MF; Filippini F; Mongillo M
    J Biol Chem; 2012 Feb; 287(7):4818-25. PubMed ID: 22139833
    [TBL] [Abstract][Full Text] [Related]  

  • 38. High-efficiency channelrhodopsins for fast neuronal stimulation at low light levels.
    Berndt A; Schoenenberger P; Mattis J; Tye KM; Deisseroth K; Hegemann P; Oertner TG
    Proc Natl Acad Sci U S A; 2011 May; 108(18):7595-600. PubMed ID: 21504945
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Insights into degradation and targeting of the photoreceptor channelrhodopsin-1.
    Wolfram M; Greif A; Baidukova O; Voll H; Tauber S; Lindacher J; Hegemann P; Kreimer G
    Plant Cell Environ; 2024 Jun; ():. PubMed ID: 38935876
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The form and function of channelrhodopsin.
    Deisseroth K; Hegemann P
    Science; 2017 Sep; 357(6356):. PubMed ID: 28912215
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.