BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 19104484)

  • 1. Caffeic acid derivatives from Eupatorium perfoliatum L.
    Maas M; Petereit F; Hensel A
    Molecules; 2008 Dec; 14(1):36-45. PubMed ID: 19104484
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of isomeric dicaffeoylquinic acids from Eleutherococcus senticosus using HPLC-ESI/TOF/MS and 1H-NMR methods.
    Tolonen A; Joutsamo T; Mattlla S; Kämäräinen T; Jalonen J
    Phytochem Anal; 2002; 13(6):316-28. PubMed ID: 12494749
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Natural products from Scorzonera aristata (Asteraceae).
    Jehle M; Bano J; Ellmerer EP; Zidorn C
    Nat Prod Commun; 2010 May; 5(5):725-7. PubMed ID: 20521536
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Caffeic acid derivatives in the roots of yacon (Smallanthus sonchifolius).
    Takenaka M; Yan X; Ono H; Yoshida M; Nagata T; Nakanishi T
    J Agric Food Chem; 2003 Jan; 51(3):793-6. PubMed ID: 12537459
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enzymatic production of caffeic acid by koji from plant resources containing caffeoylquinic acid derivatives.
    Yoshimoto M; Kurata-Azuma R; Fujii M; Hou DX; Ikeda K; Yoshidome T; Osako M
    Biosci Biotechnol Biochem; 2005 Sep; 69(9):1777-81. PubMed ID: 16195601
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Antioxidant activity of caffeoyl quinic acid derivatives from the roots of Dipsacus asper Wall.
    Hung TM; Na M; Thuong PT; Su ND; Sok D; Song KS; Seong YH; Bae K
    J Ethnopharmacol; 2006 Nov; 108(2):188-92. PubMed ID: 16809011
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Discriminating between the six isomers of dicaffeoylquinic acid by LC-MS(n).
    Clifford MN; Knight S; Kuhnert N
    J Agric Food Chem; 2005 May; 53(10):3821-32. PubMed ID: 15884803
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Preparative isolation and purification of dicaffeoylquinic acids from the Ainsliaea fragrans champ by high-speed counter-current chromatography.
    Wang Y; Liu B
    Phytochem Anal; 2007; 18(5):436-40. PubMed ID: 17624899
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stability and bioavailability of antioxidants in garland (Chrysanthemum coronarium L.).
    Takenaka M; Nagata T; Yoshida M
    Biosci Biotechnol Biochem; 2000 Dec; 64(12):2689-91. PubMed ID: 11210137
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Caffeoylquinic acid derivatives from stems of Akebia trifoliata].
    Wang J; Xu QL; Zhou ZY; Tan JW
    Zhong Yao Cai; 2014 Jul; 37(7):1190-3. PubMed ID: 25566654
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative study of the antioxidative activities of caffeoylquinic and caffeic acids.
    Marković S; Tošović J
    Food Chem; 2016 Nov; 210():585-92. PubMed ID: 27211685
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Caffeoylquinic acid derivatives isolated from the aerial parts of Gynura divaricata and their yeast α-glucosidase and PTP1B inhibitory activity.
    Chen J; Mangelinckx S; Ma L; Wang Z; Li W; De Kimpe N
    Fitoterapia; 2014 Dec; 99():1-6. PubMed ID: 25172103
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Studies on the hepatocyte protective activity and the structure-activity relationships of quinic acid and caffeic acid derivatives from the flower buds of Lonicera bournei.
    Xiang T; Xiong QB; Ketut AI; Tezuka Y; Nagaoka T; Wu LJ; Kadota S
    Planta Med; 2001 Jun; 67(4):322-5. PubMed ID: 11458447
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Profiling the chlorogenic acids and other caffeic acid derivatives of herbal chrysanthemum by LC-MSn.
    Clifford MN; Wu W; Kirkpatrick J; Kuhnert N
    J Agric Food Chem; 2007 Feb; 55(3):929-36. PubMed ID: 17263495
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Formation of ester and amine derivatives of 5-O-caffeoylquinic acid in the process of its simulated extraction.
    Dawidowicz AL; Typek R
    J Agric Food Chem; 2012 Dec; 60(50):12289-95. PubMed ID: 23176346
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A new sesquiterpene lactone glycoside and a new quinic acid methyl ester from Patrinia villosa.
    Yang YF; Ma HM; Chen G; Wang HF; Xiang Z; Feng QM; Hua HM; Pei YH
    J Asian Nat Prod Res; 2016 Oct; 18(10):945-51. PubMed ID: 27156969
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis, Anti-HCV, Antioxidant and Reduction of Intracellular Reactive Oxygen Species Generation of a Chlorogenic Acid Analogue with an Amide Bond Replacing the Ester Bond.
    Wang LN; Wang W; Hattori M; Daneshtalab M; Ma CM
    Molecules; 2016 Jun; 21(6):. PubMed ID: 27338318
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thermal transformation of trans-5-O-caffeoylquinic acid (trans-5-CQA) in alcoholic solutions.
    Dawidowicz AL; Typek R
    Food Chem; 2015 Jan; 167():52-60. PubMed ID: 25148959
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chemistry and pharmacological action of caffeoylquinic acid derivatives and pharmaceutical utilization of chwinamul (Korean Mountainous vegetable).
    Park HJ
    Arch Pharm Res; 2010 Nov; 33(11):1703-20. PubMed ID: 21116772
    [TBL] [Abstract][Full Text] [Related]  

  • 20. New 5-O-caffeoylquinic acid derivatives in fruit of the wild eggplant relative Solanum viarum.
    Ma C; Whitaker BD; Kennelly EJ
    J Agric Food Chem; 2010 Oct; 58(20):11036-42. PubMed ID: 20886887
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.