BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

67 related articles for article (PubMed ID: 1910454)

  • 1. Flavoproteins with a covalent histidyl(N3)-8 alpha-riboflavin linkage.
    Decker K; Brandsch R
    Biofactors; 1991 Jun; 3(2):69-81. PubMed ID: 1910454
    [No Abstract]   [Full Text] [Related]  

  • 2. Covalent attachment of flavin adenine dinucleotide (FAD) and flavin mononucleotide (FMN) to enzymes: the current state of affairs.
    Mewies M; McIntire WS; Scrutton NS
    Protein Sci; 1998 Jan; 7(1):7-20. PubMed ID: 9514256
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Model systems for flavoenzyme activity: an electrochemically tuneable model of roseoflavin.
    Cooke G; Legrand YM; Rotello VM
    Chem Commun (Camb); 2004 May; (9):1088-9. PubMed ID: 15116198
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cell-free synthesis of a flavoprotein containing the 8 alpha-(N3-histidyl)-riboflavin linkage.
    Hamm HH; Decker K
    Eur J Biochem; 1980 Mar; 104(2):391-5. PubMed ID: 6988214
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Blue-light-triggered photorelease of active chemicals captured by the flavoprotein dodecin.
    Nöll G; Trawöger S; von Sanden-Flohe M; Dick B; Grininger M
    Chembiochem; 2009 Mar; 10(5):834-7. PubMed ID: 19253924
    [No Abstract]   [Full Text] [Related]  

  • 6. UV-visible spectroscopy as a tool to study flavoproteins.
    Macheroux P
    Methods Mol Biol; 1999; 131():1-7. PubMed ID: 10494538
    [No Abstract]   [Full Text] [Related]  

  • 7. How and why are some riboflavin coenzymes covalently attached to proteins?
    Decker K
    J Nutr Sci Vitaminol (Tokyo); 1992; Spec No():40-5. PubMed ID: 1297774
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The histidine tail of recombinant DNA binding proteins may influence the quality of interaction with DNA.
    Büning H; Gärtner U; von Schack D; Baeuerle PA; Zorbas H
    Anal Biochem; 1996 Feb; 234(2):227-30. PubMed ID: 8714604
    [No Abstract]   [Full Text] [Related]  

  • 9. Evolution of vitamin B2 biosynthesis: riboflavin synthase of Arabidopsis thaliana and its inhibition by riboflavin.
    Fischer M; Haase I; Feicht R; Schramek N; Köhler P; Schieberle P; Bacher A
    Biol Chem; 2005 May; 386(5):417-28. PubMed ID: 15927885
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evolution of vitamin B2 biosynthesis. A novel class of riboflavin synthase in Archaea.
    Fischer M; Schott AK; Römisch W; Ramsperger A; Augustin M; Fidler A; Bacher A; Richter G; Huber R; Eisenreich W
    J Mol Biol; 2004 Oct; 343(1):267-78. PubMed ID: 15381435
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biosynthesis of vitamin B2: Structure and mechanism of riboflavin synthase.
    Fischer M; Bacher A
    Arch Biochem Biophys; 2008 Jun; 474(2):252-65. PubMed ID: 18298940
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Femtosecond dynamics of flavoproteins: charge separation and recombination in riboflavine (vitamin B2)-binding protein and in glucose oxidase enzyme.
    Zhong D; Zewail AH
    Proc Natl Acad Sci U S A; 2001 Oct; 98(21):11867-72. PubMed ID: 11592997
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Crystal structure of NAD(P)H:flavin oxidoreductase from Escherichia coli.
    Ingelman M; Ramaswamy S; Nivière V; Fontecave M; Eklund H
    Biochemistry; 1999 Jun; 38(22):7040-9. PubMed ID: 10353815
    [TBL] [Abstract][Full Text] [Related]  

  • 14. l-Galactono-gamma-lactone dehydrogenase from Arabidopsis thaliana, a flavoprotein involved in vitamin C biosynthesis.
    Leferink NG; van den Berg WA; van Berkel WJ
    FEBS J; 2008 Feb; 275(4):713-26. PubMed ID: 18190525
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Crystal structure analysis of the activation of histidine by Thermus thermophilus histidyl-tRNA synthetase.
    Aberg A; Yaremchuk A; Tukalo M; Rasmussen B; Cusack S
    Biochemistry; 1997 Mar; 36(11):3084-94. PubMed ID: 9115984
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of the histidyl residue obligatory for the catalytic activity of the human H+/peptide cotransporters PEPT1 and PEPT2.
    Fei YJ; Liu W; Prasad PD; Kekuda R; Oblak TG; Ganapathy V; Leibach FH
    Biochemistry; 1997 Jan; 36(2):452-60. PubMed ID: 9003198
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Crystal structure of Paracoccus denitrificans electron transfer flavoprotein: structural and electrostatic analysis of a conserved flavin binding domain.
    Roberts DL; Salazar D; Fulmer JP; Frerman FE; Kim JJ
    Biochemistry; 1999 Feb; 38(7):1977-89. PubMed ID: 10026281
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Covalently bound Flavin Coenzymes.
    Kearney EB; Kenny WC
    Horiz Biochem Biophys; 1974; 1():62-96. PubMed ID: 4619616
    [No Abstract]   [Full Text] [Related]  

  • 19. Identification of the covalent flavin attachment site in sarcosine oxidase.
    Chlumsky LJ; Sturgess AW; Nieves E; Jorns MS
    Biochemistry; 1998 Feb; 37(8):2089-95. PubMed ID: 9485355
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inosine-uridine nucleoside hydrolase from Crithidia fasciculata. Genetic characterization, crystallization, and identification of histidine 241 as a catalytic site residue.
    Gopaul DN; Meyer SL; Degano M; Sacchettini JC; Schramm VL
    Biochemistry; 1996 May; 35(19):5963-70. PubMed ID: 8634237
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.