These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 1910455)

  • 21. Examination of the antiproliferative activity of iron chelators: multiple cellular targets and the different mechanism of action of triapine compared with desferrioxamine and the potent pyridoxal isonicotinoyl hydrazone analogue 311.
    Chaston TB; Lovejoy DB; Watts RN; Richardson DR
    Clin Cancer Res; 2003 Jan; 9(1):402-14. PubMed ID: 12538494
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Nitric oxide inhibits iron-induced lipid peroxidation in HL-60 cells.
    Kelley EE; Wagner BA; Buettner GR; Burns CP
    Arch Biochem Biophys; 1999 Oct; 370(1):97-104. PubMed ID: 10496982
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Iron-dependent peroxidation of rat brain: a regional study.
    Subbarao KV; Richardson JS
    J Neurosci Res; 1990 Jun; 26(2):224-32. PubMed ID: 2366265
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Asbestos health hazard: a spectroscopic study of synthetic geoinspired Fe-doped chrysotile.
    Foresti E; Fornero E; Lesci IG; Rinaudo C; Zuccheri T; Roveri N
    J Hazard Mater; 2009 Aug; 167(1-3):1070-9. PubMed ID: 19264404
    [TBL] [Abstract][Full Text] [Related]  

  • 25. [Pathogenesis and mechanism of iron overload: ferric nitrilotriacetate, hemosiderin, active oxygen, and carcinogenesis].
    Awai M
    Rinsho Ketsueki; 1989 Aug; 30(8):1115-27. PubMed ID: 2689676
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Supercoiled plasmid DNA as a model target for assessing the generation of free radicals at the surface of fibres.
    Donaldson K; Gilmour PS; Beswick PH
    Exp Toxicol Pathol; 1995 Sep; 47(4):235-7. PubMed ID: 8855117
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The effect of iron binding on the ability of crocidolite asbestos to catalyze DNA single-strand breaks.
    Hardy JA; Aust AE
    Carcinogenesis; 1995 Feb; 16(2):319-25. PubMed ID: 7859364
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Role of Iron in the Cellular Effects of Asbestos.
    Aust EA; Lund LG; Chao CC; Park SH; Fang R
    Inhal Toxicol; 2000 Jan; 12 Suppl 3():75-80. PubMed ID: 26368602
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Activation of UICC crocidolite: the effect of conversion of some ferric ions to ferrous ions.
    Gulumian M; Bhoolia DJ; Du Toit RS; Rendall RE; Pollak H; van Wyk JA; Rhempula M
    Environ Res; 1993 Feb; 60(2):193-206. PubMed ID: 8386081
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Evidence supporting a role for active oxygen species in asbestos-induced toxicity and lung disease.
    Mossman BT; Marsh JP
    Environ Health Perspect; 1989 May; 81():91-4. PubMed ID: 2667992
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Iron associated with asbestos bodies is responsible for the formation of single strand breaks in phi X174 RFI DNA.
    Lund LG; Williams MG; Dodson RF; Aust AE
    Occup Environ Med; 1994 Mar; 51(3):200-4. PubMed ID: 8130850
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Role of iron in the reactivity of mineral fibers.
    Fubini B; Mollo L
    Toxicol Lett; 1995 Dec; 82-83():951-60. PubMed ID: 8597167
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Iron mobilization from asbestos by chelators and ascorbic acid.
    Lund LG; Aust AE
    Arch Biochem Biophys; 1990 Apr; 278(1):61-4. PubMed ID: 2321970
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Chemical characterization and reactivity of iron chelator-treated amphibole asbestos.
    Gold J; Amandusson H; Krozer A; Kasemo B; Ericsson T; Zanetti G; Fubini B
    Environ Health Perspect; 1997 Sep; 105 Suppl 5(Suppl 5):1021-30. PubMed ID: 9400694
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The iron-related molecular toxicity mechanism of synthetic asbestos nanofibres: a model study for high-aspect-ratio nanoparticles.
    Turci F; Tomatis M; Lesci IG; Roveri N; Fubini B
    Chemistry; 2011 Jan; 17(1):350-8. PubMed ID: 21207631
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mechanism of asbestos-mediated DNA damage: role of heme and heme proteins.
    Rahman Q; Mahmood N; Khan SG; Arif JM; Athar M
    Environ Health Perspect; 1997 Sep; 105 Suppl 5(Suppl 5):1109-12. PubMed ID: 9400708
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Role of iron in asbestos-body-induced oxidant radical generation.
    Governa M; Amati M; Fontana S; Visona I ; Botta GC; Mollo F; Bellis D; Bo P
    J Toxicol Environ Health A; 1999 Nov; 58(5):279-87. PubMed ID: 10598953
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Relationship between exposure to asbestos, collagen formation, ferruginous bodies, and carcinoma.
    Flowers ES
    Am Ind Hyg Assoc J; 1974 Nov; 35(11):724-9. PubMed ID: 4372877
    [No Abstract]   [Full Text] [Related]  

  • 39. Differential role of hydrogen peroxide and organic peroxides in augmenting asbestos-mediated DNA damage: implications for asbestos induced carcinogenesis.
    Mahmood N; Khan SG; Athar M; Rahman Q
    Biochem Biophys Res Commun; 1994 Apr; 200(2):687-94. PubMed ID: 8179601
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Dual preventive benefits of iron elimination by desferal in asbestos-induced mesothelial carcinogenesis.
    Jiang L; Chew SH; Nakamura K; Ohara Y; Akatsuka S; Toyokuni S
    Cancer Sci; 2016 Jul; 107(7):908-15. PubMed ID: 27088640
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.