BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 19104866)

  • 1. Contaminants and nutrients : availability, accumulation/exclusion and plant-microbia-soil interactions. EU COST 859 Meeting at Smolenice, Slovakia, 22-24 May 2008.
    Markert B; Lux A; Kidd P; Verkleij J; Schwitzguébel JP
    Environ Sci Pollut Res Int; 2009 May; 16(3):361-2. PubMed ID: 19104866
    [No Abstract]   [Full Text] [Related]  

  • 2. Evaluation of plant-microorganism synergy for the remediation of diesel fuel contaminated soil.
    Lin X; Li X; Li P; Li F; Zhang L; Zhou Q
    Bull Environ Contam Toxicol; 2008 Jul; 81(1):19-24. PubMed ID: 18493697
    [TBL] [Abstract][Full Text] [Related]  

  • 3. New advances in plant growth-promoting rhizobacteria for bioremediation.
    Zhuang X; Chen J; Shim H; Bai Z
    Environ Int; 2007 Apr; 33(3):406-13. PubMed ID: 17275086
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phytoremediation of petroleum contaminated soils by Mirabilis Jalapa L. in a greenhouse plot experiment.
    Peng S; Zhou Q; Cai Z; Zhang Z
    J Hazard Mater; 2009 Sep; 168(2-3):1490-6. PubMed ID: 19346069
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation of the phytoremediation potential of four plant species for dibenzofuran-contaminated soil.
    Wang Y; Oyaizu H
    J Hazard Mater; 2009 Sep; 168(2-3):760-4. PubMed ID: 19321258
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of activated charcoal amendment to contaminated soil on dieldrin and nutrient uptake by cucumbers.
    Hilber I; Wyss GS; Mäder P; Bucheli TD; Meier I; Vogt L; Schulin R
    Environ Pollut; 2009; 157(8-9):2224-30. PubMed ID: 19427724
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Using soil bacteria to facilitate phytoremediation.
    Glick BR
    Biotechnol Adv; 2010; 28(3):367-74. PubMed ID: 20149857
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impact of electrokinetic remediation on microbial communities within PCP contaminated soil.
    Lear G; Harbottle MJ; Sills G; Knowles CJ; Semple KT; Thompson IP
    Environ Pollut; 2007 Mar; 146(1):139-46. PubMed ID: 17045711
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Changes in nutrient profile of soil subjected to bioleaching for removal of heavy metals using Acidithiobacillus thiooxidans.
    NareshKumar R; Nagendran R
    J Hazard Mater; 2008 Aug; 156(1-3):102-7. PubMed ID: 18206305
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modeling the mechanisms for uptake and translocation of dioxane in a soil-plant ecosystem with STELLA.
    Ouyang Y
    J Contam Hydrol; 2008 Jan; 95(1-2):17-29. PubMed ID: 17870205
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biotechnological applications of serpentine soil bacteria for phytoremediation of trace metals.
    Rajkumar M; Vara Prasad MN; Freitas H; Ae N
    Crit Rev Biotechnol; 2009; 29(2):120-30. PubMed ID: 19514893
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Advances in development of transgenic plants for remediation of xenobiotic pollutants.
    Eapen S; Singh S; D'Souza SF
    Biotechnol Adv; 2007; 25(5):442-51. PubMed ID: 17553651
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bioremediation of diesel oil in a co-contaminated soil by bioaugmentation with a microbial formula tailored with native strains selected for heavy metals resistance.
    Alisi C; Musella R; Tasso F; Ubaldi C; Manzo S; Cremisini C; Sprocati AR
    Sci Total Environ; 2009 Apr; 407(8):3024-32. PubMed ID: 19201450
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phytoremediation of organic contaminants in soil and groundwater.
    Reichenauer TG; Germida JJ
    ChemSusChem; 2008; 1(8-9):708-17. PubMed ID: 18698569
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mobilisation of bacteria in soils by electro-osmosis.
    Suni S; Romantschuk M
    FEMS Microbiol Ecol; 2004 Jul; 49(1):51-7. PubMed ID: 19712383
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Co-remediation of the lead-polluted garden soil by exogenous natural zeolite and humic acids.
    Shi WY; Shao HB; Li H; Shao MA; Du S
    J Hazard Mater; 2009 Aug; 167(1-3):136-40. PubMed ID: 19171426
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Field-scale cleanup of atrazine and cyanazine contaminated soil with a combined chemical-biological approach.
    Waria M; Comfort SD; Onanong S; Satapanajaru T; Boparai H; Harris C; Snow DD; Cassada DA
    J Environ Qual; 2009; 38(5):1803-11. PubMed ID: 19643745
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Environmental implications of soil remediation using the Fenton process.
    Villa RD; Trovó AG; Nogueira RF
    Chemosphere; 2008 Mar; 71(1):43-50. PubMed ID: 18068206
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nitrate removal by electro-bioremediation technology in Korean soil.
    Choi JH; Maruthamuthu S; Lee HG; Ha TH; Bae JH
    J Hazard Mater; 2009 Sep; 168(2-3):1208-16. PubMed ID: 19342160
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effect of agitation on the biodegradation of hydrocarbon contaminants in soil slurries.
    Stroud JL; Paton GI; Semple KT
    Chemosphere; 2009 Sep; 77(1):123-8. PubMed ID: 19487012
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.