BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 1910566)

  • 1. Morphine effects in brainstem-transected cats: I. EEG and 'sleep-wakefulness' in the isolated forebrain.
    Corpas I; de Andrés I
    Behav Brain Res; 1991 Jul; 44(1):11-9. PubMed ID: 1910566
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Counterpointing the functional role of the forebrain and of the brainstem in the control of the sleep-waking system.
    Villablanca JR
    J Sleep Res; 2004 Sep; 13(3):179-208. PubMed ID: 15339255
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Morphine effects in brainstem-transected cats: II. Behavior and sleep of the decerebrate cat.
    de Andrés I; Corpas I
    Behav Brain Res; 1991 Jul; 44(1):21-6. PubMed ID: 1910567
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The brain stem but not forebrain independently supports morphine tolerance and withdrawal effects in cats.
    de Andrés I; Garzón M; Villablanca JR
    Behav Brain Res; 2004 Jan; 148(1-2):133-44. PubMed ID: 14684254
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reassessing morphine effects in cats: II. Protracted effects on sleep-wakefulness and the EEG.
    de Andres I; Villablanca JR; Burgess JW
    Pharmacol Biochem Behav; 1984 Dec; 21(6):923-8. PubMed ID: 6543002
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of beta-endorphin and morphine on the sleep-wakefulness behavior of cats.
    King C; Masserano JM; Codd E; Byrne WL
    Sleep; 1981 Sep; 4(3):259-62. PubMed ID: 6272385
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Differential responses of brain stem neurons during spontaneous and stimulation-induced desynchronization of the cortical eeg in freely moving cats.
    Mallick BN; Thankachan S; Islam F
    Sleep Res Online; 1998; 1(4):132-46. PubMed ID: 11382870
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sleep-waking states develop independently in the isolated forebrain and brain stem following early postnatal midbrain transection in cats.
    Villablanca JR; de Andrés I; Olmstead CE
    Neuroscience; 2001; 106(4):717-31. PubMed ID: 11682158
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chronic morphine administration in cats: effects on sleep and EEG.
    De Andrés I; Caballero A
    Pharmacol Biochem Behav; 1989 Feb; 32(2):519-26. PubMed ID: 2727014
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electroencephalographic and behavioral effects of D-ala2-methionine-enkephalinamide and morphine in the rat.
    Tortella FC; Moreton JE; Khazan N
    J Pharmacol Exp Ther; 1978 Sep; 206(3):636-43. PubMed ID: 702326
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of opioid microinjections in the nucleus of the solitary tract on the sleep-wakefulness cycle states in cats.
    Reinoso-Barbero F; de Andrés I
    Anesthesiology; 1995 Jan; 82(1):144-52. PubMed ID: 7832296
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Opioids cause dissociated states of consciousness in C57BL/6J mice.
    O'Brien CB; Locklear CE; Glovak ZT; Zebadúa Unzaga D; Baghdoyan HA; Lydic R
    J Neurophysiol; 2021 Oct; 126(4):1265-1275. PubMed ID: 34469699
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Morphine-like effects of clonidine on the EEG, slow wave sleep and behavior in the dog.
    Pickworth WB; Sharpe LG; Gupta VN
    Eur J Pharmacol; 1982 Jul; 81(4):551-7. PubMed ID: 7117387
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [The action profile of D,L-kavain. Cerebral sites and sleep-wakefulness-rhythm in animals].
    Holm E; Staedt U; Heep J; Kortsik C; Behne F; Kaske A; Mennicke I
    Arzneimittelforschung; 1991 Jul; 41(7):673-83. PubMed ID: 1772452
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Opiate microinjections in the locus coeruleus area of the cat enhance slow wave sleep.
    Garzón M; Tejero S; Benéitez AM; de Andrés I
    Neuropeptides; 1995 Oct; 29(4):229-39. PubMed ID: 8584141
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Relationships between phenomena of paradoxical sleep and their counterparts in wakefulness.
    Morrison AR
    Acta Neurobiol Exp (Wars); 1979; 39(6):567-83. PubMed ID: 232812
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cholinergic regulation of the central nucleus of the amygdala in rats: effects of local microinjections of cholinomimetics and cholinergic antagonists on arousal and sleep.
    Sanford LD; Yang L; Tang X; Dong E; Ross RJ; Morrison AR
    Neuroscience; 2006 Sep; 141(4):2167-76. PubMed ID: 16843604
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Morphine-induced mydriasis and inhibition of pupillary light reflex and fluctuations in the cat.
    Pickworth WB; Sharpe LG
    J Pharmacol Exp Ther; 1985 Sep; 234(3):603-6. PubMed ID: 2993586
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The metabotropic glutamate (mGLU)2/3 receptor antagonist LY341495 [2S-2-amino-2-(1S,2S-2-carboxycyclopropyl-1-yl)-3-(xanth-9-yl)propanoic acid] stimulates waking and fast electroencephalogram power and blocks the effects of the mGLU2/3 receptor agonist ly379268 [(-)-2-oxa-4-aminobicyclo[3.1.0]hexane-4,6-dicarboxylate] in rats.
    Feinberg I; Schoepp DD; Hsieh KC; Darchia N; Campbell IG
    J Pharmacol Exp Ther; 2005 Feb; 312(2):826-33. PubMed ID: 15383637
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The EEG effects of THIP (Gaboxadol) on sleep and waking are mediated by the GABA(A)delta-subunit-containing receptors.
    Winsky-Sommerer R; Vyazovskiy VV; Homanics GE; Tobler I
    Eur J Neurosci; 2007 Mar; 25(6):1893-9. PubMed ID: 17408425
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.