These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 19105789)

  • 1. Facile synthesis of tin oxide nanoflowers: a potential high-capacity lithium-ion-storage material.
    Ning J; Dai Q; Jiang T; Men K; Liu D; Xiao N; Li C; Li D; Liu B; Zou B; Zou G; Yu WW
    Langmuir; 2009 Feb; 25(3):1818-21. PubMed ID: 19105789
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Combination of lightweight elements and nanostructured materials for batteries.
    Chen J; Cheng F
    Acc Chem Res; 2009 Jun; 42(6):713-23. PubMed ID: 19354236
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Small quantities of cobalt deposited on tin oxide as anode material to improve performance of lithium-ion batteries.
    Mei L; Li C; Qu B; Zhang M; Xu C; Lei D; Chen Y; Xu Z; Chen L; Li Q; Wang T
    Nanoscale; 2012 Sep; 4(18):5731-7. PubMed ID: 22892999
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Double-shelled nanocapsules of V2O5-based composites as high-performance anode and cathode materials for Li ion batteries.
    Liu J; Xia H; Xue D; Lu L
    J Am Chem Soc; 2009 Sep; 131(34):12086-7. PubMed ID: 19705911
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Porous Co3O4 nanosheets with extraordinarily high discharge capacity for lithium batteries.
    Zhan F; Geng B; Guo Y
    Chemistry; 2009 Jun; 15(25):6169-74. PubMed ID: 19437475
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Controllable synthesis of monodisperse ultrathin SnO₂ nanorods on nitrogen-doped graphene and its ultrahigh lithium storage properties.
    Xu C; Sun J; Gao L
    Nanoscale; 2012 Sep; 4(17):5425-30. PubMed ID: 22832436
    [TBL] [Abstract][Full Text] [Related]  

  • 7. SnO2/WO3 core-shell nanorods and their high reversible capacity as lithium-ion battery anodes.
    Xue XY; He B; Yuan S; Xing LL; Chen ZH; Ma CH
    Nanotechnology; 2011 Sep; 22(39):395702. PubMed ID: 21891841
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nanostructured reduced graphene oxide/Fe2O3 composite as a high-performance anode material for lithium ion batteries.
    Zhu X; Zhu Y; Murali S; Stoller MD; Ruoff RS
    ACS Nano; 2011 Apr; 5(4):3333-8. PubMed ID: 21443243
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High rate reversibility anode materials of lithium batteries from vapor-grown carbon nanofibers.
    Subramanian V; Zhu H; Wei B
    J Phys Chem B; 2006 Apr; 110(14):7178-83. PubMed ID: 16599483
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Wintersweet-flower-like CoFe2O4/MWCNTs hybrid material for high-capacity reversible lithium storage.
    Wang Y; Park J; Sun B; Ahn H; Wang G
    Chem Asian J; 2012 Aug; 7(8):1940-6. PubMed ID: 22593078
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis of manganese oxide electrodes with interconnected nanowire structure as an anode material for rechargeable lithium ion batteries.
    Wu MS; Chiang PC; Lee JT; Lin JC
    J Phys Chem B; 2005 Dec; 109(49):23279-84. PubMed ID: 16375294
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In situ synthesis of MoS2/graphene nanosheet composites with extraordinarily high electrochemical performance for lithium ion batteries.
    Chang K; Chen W
    Chem Commun (Camb); 2011 Apr; 47(14):4252-4. PubMed ID: 21380470
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mn3O4-graphene hybrid as a high-capacity anode material for lithium ion batteries.
    Wang H; Cui LF; Yang Y; Sanchez Casalongue H; Robinson JT; Liang Y; Cui Y; Dai H
    J Am Chem Soc; 2010 Oct; 132(40):13978-80. PubMed ID: 20853844
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sodium chloride template synthesis of cubic tin dioxide hollow particles for lithium ion battery applications.
    Liu R; Yang S; Wang F; Lu X; Yang Z; Ding B
    ACS Appl Mater Interfaces; 2012 Mar; 4(3):1537-42. PubMed ID: 22276802
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Self-supported SnO2 nanowire electrodes for high-power lithium-ion batteries.
    Ko YD; Kang JG; Park JG; Lee S; Kim DW
    Nanotechnology; 2009 Nov; 20(45):455701. PubMed ID: 19822930
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spontaneous organization of uniform CeO2 nanoflowers by 3D oriented attachment in hot surfactant solutions monitored with an in situ electrical conductance technique.
    Zhou HP; Zhang YW; Mai HX; Sun X; Liu Q; Song WG; Yan CH
    Chemistry; 2008; 14(11):3380-90. PubMed ID: 18260069
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Facile scalable synthesis of magnetite nanocrystals embedded in carbon matrix as superior anode materials for lithium-ion batteries.
    Piao Y; Kim HS; Sung YE; Hyeon T
    Chem Commun (Camb); 2010 Jan; 46(1):118-20. PubMed ID: 20024312
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Facile Synthesis of Hierarchical Tin Oxide Nanoflowers with Ultra-High Methanol Gas Sensing at Low Working Temperature.
    Song L; Lukianov A; Butenko D; Li H; Zhang J; Feng M; Liu L; Chen D; Klyui NI
    Nanoscale Res Lett; 2019 Mar; 14(1):84. PubMed ID: 30850924
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Large-scale synthesis of SnO2 nanosheets with high lithium storage capacity.
    Wang C; Zhou Y; Ge M; Xu X; Zhang Z; Jiang JZ
    J Am Chem Soc; 2010 Jan; 132(1):46-7. PubMed ID: 20000321
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fabrication of porous carbon nanofibers and their application as anode materials for rechargeable lithium-ion batteries.
    Ji L; Zhang X
    Nanotechnology; 2009 Apr; 20(15):155705. PubMed ID: 19420557
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.