These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 19106085)

  • 1. A novel proteomics approach for the discovery of chromatin-associated protein networks.
    Lambert JP; Mitchell L; Rudner A; Baetz K; Figeys D
    Mol Cell Proteomics; 2009 Apr; 8(4):870-82. PubMed ID: 19106085
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Defining the budding yeast chromatin-associated interactome.
    Lambert JP; Fillingham J; Siahbazi M; Greenblatt J; Baetz K; Figeys D
    Mol Syst Biol; 2010 Dec; 6():448. PubMed ID: 21179020
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Applicability of tandem affinity purification MudPIT to pathway proteomics in yeast.
    Graumann J; Dunipace LA; Seol JH; McDonald WH; Yates JR; Wold BJ; Deshaies RJ
    Mol Cell Proteomics; 2004 Mar; 3(3):226-37. PubMed ID: 14660704
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tandem affinity purification of histones, coupled to mass spectrometry, identifies associated proteins and new sites of post-translational modification in Saccharomyces cerevisiae.
    Valero ML; Sendra R; Pamblanco M
    J Proteomics; 2016 Mar; 136():183-92. PubMed ID: 26778144
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Incorporating DNA shearing in standard affinity purification allows simultaneous identification of both soluble and chromatin-bound interaction partners.
    Lambert JP; Tucholska M; Pawson T; Gingras AC
    J Proteomics; 2014 Apr; 100():55-9. PubMed ID: 24412199
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chromatin immunoprecipitation to study protein-DNA interactions in budding yeast.
    Ezhkova E; Tansey WP
    Methods Mol Biol; 2006; 313():225-44. PubMed ID: 16118437
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of proteins associated with RNA polymerase III using a modified tandem chromatin affinity purification.
    Nguyen NT; Saguez C; Conesa C; Lefebvre O; Acker J
    Gene; 2015 Feb; 556(1):51-60. PubMed ID: 25086199
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chromatin remodelling at a DNA double-strand break site in Saccharomyces cerevisiae.
    Tsukuda T; Fleming AB; Nickoloff JA; Osley MA
    Nature; 2005 Nov; 438(7066):379-83. PubMed ID: 16292314
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The silencing complex SAS-I links histone acetylation to the assembly of repressed chromatin by CAF-I and Asf1 in Saccharomyces cerevisiae.
    Meijsing SH; Ehrenhofer-Murray AE
    Genes Dev; 2001 Dec; 15(23):3169-82. PubMed ID: 11731480
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Yeast chromatin reconstitution system using purified yeast core histones and yeast nucleosome assembly protein-1.
    Pilon J; Terrell A; Laybourn PJ
    Protein Expr Purif; 1997 Jun; 10(1):132-40. PubMed ID: 9179300
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The WD40-repeat protein Pwp1p associates in vivo with 25S ribosomal chromatin in a histone H4 tail-dependent manner.
    Suka N; Nakashima E; Shinmyozu K; Hidaka M; Jingami H
    Nucleic Acids Res; 2006; 34(12):3555-67. PubMed ID: 16855292
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Global dynamics of newly constructed oligonucleosomes of conventional and variant H2A.Z histone.
    Ramaswamy A; Ioshikhes I
    BMC Struct Biol; 2007 Nov; 7():76. PubMed ID: 17996059
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of the Nucleolar Localization of the RENT Complex to Ribosomal DNA by Chromatin Immunoprecipitation Assays.
    Huang J; Iglesias N; Moazed D
    Methods Mol Biol; 2017; 1505():195-213. PubMed ID: 27826866
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mapping physical interactions within chromatin by proteomic approaches.
    Lambert JP; Pawson T; Gingras AC
    Proteomics; 2012 May; 12(10):1609-22. PubMed ID: 22611019
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evidence that Spt6p controls chromatin structure by a direct interaction with histones.
    Bortvin A; Winston F
    Science; 1996 Jun; 272(5267):1473-6. PubMed ID: 8633238
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modulation of histone deposition by the karyopherin kap114.
    Mosammaparast N; Del Rosario BC; Pemberton LF
    Mol Cell Biol; 2005 Mar; 25(5):1764-78. PubMed ID: 15713633
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Global proteomic analysis of Saccharomyces cerevisiae identifies molecular pathways of histone modifications.
    Jackson J; Shilatifard A
    Methods Mol Biol; 2009; 548():175-86. PubMed ID: 19521825
    [TBL] [Abstract][Full Text] [Related]  

  • 18. ATP-driven exchange of histone H2AZ variant catalyzed by SWR1 chromatin remodeling complex.
    Mizuguchi G; Shen X; Landry J; Wu WH; Sen S; Wu C
    Science; 2004 Jan; 303(5656):343-8. PubMed ID: 14645854
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Advanced methods for the analysis of chromatin-associated proteins.
    Guillen-Ahlers H; Shortreed MR; Smith LM; Olivier M
    Physiol Genomics; 2014 Jul; 46(13):441-7. PubMed ID: 24803678
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Purification of specific chromatin loci for proteomic analysis.
    Byrum SD; Taverna SD; Tackett AJ
    Methods Mol Biol; 2015; 1228():83-92. PubMed ID: 25311124
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.