BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

367 related articles for article (PubMed ID: 19106183)

  • 1. Role of p53 in mitochondrial biogenesis and apoptosis in skeletal muscle.
    Saleem A; Adhihetty PJ; Hood DA
    Physiol Genomics; 2009 Mar; 37(1):58-66. PubMed ID: 19106183
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of chronic contractile activity on SS and IMF mitochondrial apoptotic susceptibility in skeletal muscle.
    Adhihetty PJ; Ljubicic V; Hood DA
    Am J Physiol Endocrinol Metab; 2007 Mar; 292(3):E748-55. PubMed ID: 17106065
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Specific attenuation of protein kinase phosphorylation in muscle with a high mitochondrial content.
    Ljubicic V; Hood DA
    Am J Physiol Endocrinol Metab; 2009 Sep; 297(3):E749-58. PubMed ID: 19549794
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regulation of mitochondrial biogenesis in skeletal muscle by CaMK.
    Wu H; Kanatous SB; Thurmond FA; Gallardo T; Isotani E; Bassel-Duby R; Williams RS
    Science; 2002 Apr; 296(5566):349-52. PubMed ID: 11951046
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lack of myostatin alters intermyofibrillar mitochondria activity, unbalances redox status, and impairs tolerance to chronic repetitive contractions in muscle.
    Ploquin C; Chabi B; Fouret G; Vernus B; Feillet-Coudray C; Coudray C; Bonnieu A; Ramonatxo C
    Am J Physiol Endocrinol Metab; 2012 Apr; 302(8):E1000-8. PubMed ID: 22318951
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Age-dependent upregulation of p53 and cytochrome c release and susceptibility to apoptosis in skeletal muscle fiber of aged rats: role of carnitine and lipoic acid.
    Tamilselvan J; Jayaraman G; Sivarajan K; Panneerselvam C
    Free Radic Biol Med; 2007 Dec; 43(12):1656-69. PubMed ID: 18037131
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Skeletal muscle and heart LKB1 deficiency causes decreased voluntary running and reduced muscle mitochondrial marker enzyme expression in mice.
    Thomson DM; Porter BB; Tall JH; Kim HJ; Barrow JR; Winder WW
    Am J Physiol Endocrinol Metab; 2007 Jan; 292(1):E196-202. PubMed ID: 16926377
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lack of AMPKalpha2 enhances pyruvate dehydrogenase activity during exercise.
    Klein DK; Pilegaard H; Treebak JT; Jensen TE; Viollet B; Schjerling P; Wojtaszewski JF
    Am J Physiol Endocrinol Metab; 2007 Nov; 293(5):E1242-9. PubMed ID: 17711995
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Methionine restriction effects on mitochondrial biogenesis and aerobic capacity in white adipose tissue, liver, and skeletal muscle of F344 rats.
    Perrone CE; Mattocks DA; Jarvis-Morar M; Plummer JD; Orentreich N
    Metabolism; 2010 Jul; 59(7):1000-11. PubMed ID: 20045141
    [TBL] [Abstract][Full Text] [Related]  

  • 10. p53 is necessary for the adaptive changes in cellular milieu subsequent to an acute bout of endurance exercise.
    Saleem A; Carter HN; Hood DA
    Am J Physiol Cell Physiol; 2014 Feb; 306(3):C241-9. PubMed ID: 24284795
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The emerging role of p53 in exercise metabolism.
    Bartlett JD; Close GL; Drust B; Morton JP
    Sports Med; 2014 Mar; 44(3):303-9. PubMed ID: 24264057
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Coordination of metabolic plasticity in skeletal muscle.
    Hood DA; Irrcher I; Ljubicic V; Joseph AM
    J Exp Biol; 2006 Jun; 209(Pt 12):2265-75. PubMed ID: 16731803
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The role of PGC-1alpha on mitochondrial function and apoptotic susceptibility in muscle.
    Adhihetty PJ; Uguccioni G; Leick L; Hidalgo J; Pilegaard H; Hood DA
    Am J Physiol Cell Physiol; 2009 Jul; 297(1):C217-25. PubMed ID: 19439529
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Diminished contraction-induced intracellular signaling towards mitochondrial biogenesis in aged skeletal muscle.
    Ljubicic V; Hood DA
    Aging Cell; 2009 Aug; 8(4):394-404. PubMed ID: 19416128
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of denervation on mitochondrially mediated apoptosis in skeletal muscle.
    Adhihetty PJ; O'Leary MF; Chabi B; Wicks KL; Hood DA
    J Appl Physiol (1985); 2007 Mar; 102(3):1143-51. PubMed ID: 17122379
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regulation by exercise of skeletal muscle content of mitochondria and GLUT4.
    Holloszy JO
    J Physiol Pharmacol; 2008 Dec; 59 Suppl 7():5-18. PubMed ID: 19258654
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Kinase-specific responsiveness to incremental contractile activity in skeletal muscle with low and high mitochondrial content.
    Ljubicic V; Hood DA
    Am J Physiol Endocrinol Metab; 2008 Jul; 295(1):E195-204. PubMed ID: 18492778
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mitochondrial biogenesis during skeletal muscle regeneration.
    Duguez S; FĂ©asson L; Denis C; Freyssenet D
    Am J Physiol Endocrinol Metab; 2002 Apr; 282(4):E802-9. PubMed ID: 11882500
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-dose antioxidant vitamin C supplementation does not prevent acute exercise-induced increases in markers of skeletal muscle mitochondrial biogenesis in rats.
    Wadley GD; McConell GK
    J Appl Physiol (1985); 2010 Jun; 108(6):1719-26. PubMed ID: 20395544
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mitochondrial function and apoptotic susceptibility in aging skeletal muscle.
    Chabi B; Ljubicic V; Menzies KJ; Huang JH; Saleem A; Hood DA
    Aging Cell; 2008 Jan; 7(1):2-12. PubMed ID: 18028258
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.