These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 19106620)

  • 21. Trigger factor in complex with the ribosome forms a molecular cradle for nascent proteins.
    Ferbitz L; Maier T; Patzelt H; Bukau B; Deuerling E; Ban N
    Nature; 2004 Sep; 431(7008):590-6. PubMed ID: 15334087
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The role of structural disorder in the function of RNA and protein chaperones.
    Tompa P; Csermely P
    FASEB J; 2004 Aug; 18(11):1169-75. PubMed ID: 15284216
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Real-time observation of trigger factor function on translating ribosomes.
    Kaiser CM; Chang HC; Agashe VR; Lakshmipathy SK; Etchells SA; Hayer-Hartl M; Hartl FU; Barral JM
    Nature; 2006 Nov; 444(7118):455-60. PubMed ID: 17051157
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The role of molecular chaperones in protein folding.
    Hendrick JP; Hartl FU
    FASEB J; 1995 Dec; 9(15):1559-69. PubMed ID: 8529835
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Co-translational folding.
    Hardesty B; Tsalkova T; Kramer G
    Curr Opin Struct Biol; 1999 Feb; 9(1):111-4. PubMed ID: 10047581
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Molecular chaperones in the cytosol: from nascent chain to folded protein.
    Hartl FU; Hayer-Hartl M
    Science; 2002 Mar; 295(5561):1852-8. PubMed ID: 11884745
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Protein folding by NMR.
    Zhuravleva A; Korzhnev DM
    Prog Nucl Magn Reson Spectrosc; 2017 May; 100():52-77. PubMed ID: 28552172
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A cradle for new proteins: trigger factor at the ribosome.
    Maier T; Ferbitz L; Deuerling E; Ban N
    Curr Opin Struct Biol; 2005 Apr; 15(2):204-12. PubMed ID: 15837180
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Productive interaction of chaperones with substrate protein domains allows correct folding of the downstream GFP domain.
    Zhang A; Cantor EJ; Barshevsky T; Chong S
    Gene; 2005 Apr; 350(1):25-31. PubMed ID: 15780997
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Structure and function of the molecular chaperone Trigger Factor.
    Hoffmann A; Bukau B; Kramer G
    Biochim Biophys Acta; 2010 Jun; 1803(6):650-61. PubMed ID: 20132842
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Molecular chaperones maximize the native state yield on biological times by driving substrates out of equilibrium.
    Chakrabarti S; Hyeon C; Ye X; Lorimer GH; Thirumalai D
    Proc Natl Acad Sci U S A; 2017 Dec; 114(51):E10919-E10927. PubMed ID: 29217641
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Nascent chains: folding and chaperone interaction during elongation on ribosomes.
    Tokatlidis K; Friguet B; Deville-Bonne D; Baleux F; Fedorov AN; Navon A; Djavadi-Ohaniance L; Goldberg ME
    Philos Trans R Soc Lond B Biol Sci; 1995 Apr; 348(1323):89-95. PubMed ID: 7770491
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Folding of newly translated proteins in vivo: the role of molecular chaperones.
    Frydman J
    Annu Rev Biochem; 2001; 70():603-47. PubMed ID: 11395418
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Rotational restriction of nascent peptides as an essential element of co-translational protein folding: possible molecular players and structural consequences.
    Sorokina I; Mushegian A
    Biol Direct; 2017 May; 12(1):14. PubMed ID: 28569180
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Conformational flexibility within the nascent polypeptide-associated complex enables its interactions with structurally diverse client proteins.
    Martin EM; Jackson MP; Gamerdinger M; Gense K; Karamonos TK; Humes JR; Deuerling E; Ashcroft AE; Radford SE
    J Biol Chem; 2018 Jun; 293(22):8554-8568. PubMed ID: 29650757
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Dual Role of Ribosome-Binding Domain of NAC as a Potent Suppressor of Protein Aggregation and Aging-Related Proteinopathies.
    Shen K; Gamerdinger M; Chan R; Gense K; Martin EM; Sachs N; Knight PD; Schlömer R; Calabrese AN; Stewart KL; Leiendecker L; Baghel A; Radford SE; Frydman J; Deuerling E
    Mol Cell; 2019 May; 74(4):729-741.e7. PubMed ID: 30982745
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Coupling de novo protein folding with subunit exchange into pre-formed oligomeric protein complexes: the 'heritable template' hypothesis.
    McMurray MA
    Biomol Concepts; 2016 Dec; 7(5-6):271-281. PubMed ID: 27875316
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Measuring cotranslational folding of nascent polypeptide chains on ribosomes.
    Clark PL; Ugrinov KG
    Methods Enzymol; 2009; 466():567-90. PubMed ID: 21609877
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Principles of chaperone-mediated protein folding.
    Hartl FU
    Philos Trans R Soc Lond B Biol Sci; 1995 Apr; 348(1323):107-12. PubMed ID: 7770479
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Folding on the chaperone: yield enhancement through loose binding.
    Jewett AI; Shea JE
    J Mol Biol; 2006 Nov; 363(5):945-57. PubMed ID: 16987526
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.