These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

89 related articles for article (PubMed ID: 1910701)

  • 1. A basic model to study acoustic evaluation of airway obstruction.
    Coleman RF; Schechter GL
    Arch Otolaryngol Head Neck Surg; 1991 Oct; 117(10):1144-9. PubMed ID: 1910701
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Time-frequency analysis of breathing signals: in vitro airway model.
    Elad D; Soffer G; Zaretsky U; Wolf M; Shiner RJ
    Technol Health Care; 2001; 9(3):269-80. PubMed ID: 11381206
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Acoustic simulation of a patient's obstructed airway.
    van der Velden WC; van Zuijlen AH; de Jong AT; Lynch CT; Hoeve LJ; Bijl H
    Comput Methods Biomech Biomed Engin; 2016; 19(2):144-58. PubMed ID: 25567545
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exhaled flow monitoring can detect bronchial flap-valve obstruction in a mechanical lung model.
    Breen PH; Serina ER; Barker SJ
    Anesth Analg; 1995 Aug; 81(2):292-6. PubMed ID: 7618717
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Acoustic analysis of upper airway obstruction in the excised human larynx.
    McGinn JD; Plant RL
    Ann Otol Rhinol Laryngol; 2002 Aug; 111(8):738-44. PubMed ID: 12184598
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Patterns of airflow in upper airways obstruction.
    Empey D
    Thorax; 1972 Mar; 27(2):262. PubMed ID: 5034612
    [No Abstract]   [Full Text] [Related]  

  • 7. [Acoustic rhinometry. A new method for objective assessment of the nasal airway dimensions].
    Djupesland P
    Tidsskr Nor Laegeforen; 1996 Oct; 116(26):3111-4. PubMed ID: 8999571
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The ventilation distribution of helium-oxygen mixtures and the role of inertial losses in the presence of heterogeneous airway obstructions.
    Katz IM; Martin AR; Muller PA; Terzibachi K; Feng CH; Caillibotte G; Sandeau J; Texereau J
    J Biomech; 2011 Apr; 44(6):1137-43. PubMed ID: 21316683
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deposition of aerosol particles and flow resistance in mathematical and experimental airway models.
    Kim CS; Brown LK; Lewars GG; Sackner MA
    J Appl Physiol Respir Environ Exerc Physiol; 1983 Jul; 55(1 Pt 1):154-63. PubMed ID: 6885565
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Determinants of expiratory airflow in patients with chronic airways obstruction.
    Campbell AH; Faulks LW
    Thorax; 1973 Jan; 28(1):48-54. PubMed ID: 4685211
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Respiratory rhinometry, a review of recent trends.
    Cole P
    Rhinology; 1980 Mar; 18(1):3-8. PubMed ID: 7367781
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of size of the nasal airway on nasal airflow rate.
    Warren DW; Hinton VA; Pillsbury HC; Hairfield WM
    Arch Otolaryngol Head Neck Surg; 1987 Apr; 113(4):405-8. PubMed ID: 3814392
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Experimental studies on the relationship between maxillary sinus ventilation and various obstructions of the nose and nasopharynx.
    Bachert C; Ganzer U
    Rhinology; 1989 Mar; 27(1):37-43. PubMed ID: 2740723
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Miniature acoustic guidance system for endotracheal tubes.
    Juan EJ; Mansfield JP; Wodicka GR
    IEEE Trans Biomed Eng; 2002 Jun; 49(6):584-96. PubMed ID: 12046704
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Use of acoustic rhinometry for determining segmental airway geometry with nasal positive or negative pressure].
    Raschke F; Fischer J
    Pneumologie; 1993 Dec; 47 Suppl 4():735-7. PubMed ID: 8153098
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Airflow-generated sound in a hollow canine airway cast.
    Kraman SS; Wang PM
    Chest; 1990 Feb; 97(2):461-6. PubMed ID: 2298072
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Oscillatory pressure transients after flow interruption during bronchial challenge test in children.
    Frey U; Kraemer R
    Eur Respir J; 1997 Jan; 10(1):75-81. PubMed ID: 9032496
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Predicted airway obstruction distribution based on dynamical lung ventilation data: A coupled modeling-machine learning methodology.
    Pozin N; Montesantos S; Katz I; Pichelin M; Vignon-Clementel I; Grandmont C
    Int J Numer Method Biomed Eng; 2018 Sep; 34(9):e3108. PubMed ID: 29799665
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The maximum expiratory flow-volume curve in patients with airway obstruction: simulation by means of a physical model.
    Pardaens J; Van de Woestijne KP
    Proc R Soc Med; 1971 Dec; 64(12):1240-3. PubMed ID: 5131273
    [No Abstract]   [Full Text] [Related]  

  • 20. Mathematical modeling of pulmonary airway dynamics.
    Golden JF; Clark JW; Stevens PM
    IEEE Trans Biomed Eng; 1973 Nov; 20(6):397-404. PubMed ID: 4754311
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 5.