BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

257 related articles for article (PubMed ID: 19107409)

  • 1. Identification of SUMO-conjugated proteins and their SUMO attachment sites using proteomic mass spectrometry.
    Wohlschlegel JA
    Methods Mol Biol; 2009; 497():33-49. PubMed ID: 19107409
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Purification and activity assays for Ubc9, the ubiquitin-conjugating enzyme for the small ubiquitin-like modifier SUMO.
    Yunus AA; Lima CD
    Methods Enzymol; 2005; 398():74-87. PubMed ID: 16275321
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The small ubiquitin-like modifier (SUMO)-conjugating system of Toxoplasma gondii.
    Braun L; Cannella D; Pinheiro AM; Kieffer S; Belrhali H; Garin J; Hakimi MA
    Int J Parasitol; 2009 Jan; 39(1):81-90. PubMed ID: 18761012
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improved identification of SUMO attachment sites using C-terminal SUMO mutants and tailored protease digestion strategies.
    Wohlschlegel JA; Johnson ES; Reed SI; Yates JR
    J Proteome Res; 2006 Apr; 5(4):761-70. PubMed ID: 16602682
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of an N-terminal site of Ubc9 in SUMO-1, -2, and -3 binding and conjugation.
    Tatham MH; Kim S; Yu B; Jaffray E; Song J; Zheng J; Rodriguez MS; Hay RT; Chen Y
    Biochemistry; 2003 Aug; 42(33):9959-69. PubMed ID: 12924945
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Overproduction of eukaryotic SUMO-1- and SUMO-2-conjugated proteins in Escherichia coli.
    Uchimura Y; Nakamura M; Sugasawa K; Nakao M; Saitoh H
    Anal Biochem; 2004 Aug; 331(1):204-6. PubMed ID: 15246018
    [No Abstract]   [Full Text] [Related]  

  • 7. Identification of SUMO target proteins by quantitative proteomics.
    Andersen JS; Matic I; Vertegaal AC
    Methods Mol Biol; 2009; 497():19-31. PubMed ID: 19107408
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Detection and quantitation of SUMO chains by mass spectrometry.
    Matic I; Hay RT
    Methods Mol Biol; 2012; 832():239-47. PubMed ID: 22350890
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of Substrates of Protein-Group SUMOylation.
    Psakhye I; Jentsch S
    Methods Mol Biol; 2016; 1475():219-31. PubMed ID: 27631809
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vitro modification of human centromere protein CENP-C fragments by small ubiquitin-like modifier (SUMO) protein: definitive identification of the modification sites by tandem mass spectrometry analysis of the isopeptides.
    Chung TL; Hsiao HH; Yeh YY; Shia HL; Chen YL; Liang PH; Wang AH; Khoo KH; Shoei-Lung Li S
    J Biol Chem; 2004 Sep; 279(38):39653-62. PubMed ID: 15272016
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification and Characterization of SUMO-SIM Interactions.
    Husnjak K; Keiten-Schmitz J; Müller S
    Methods Mol Biol; 2016; 1475():79-98. PubMed ID: 27631799
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Preparation of sumoylated substrates for biochemical analysis.
    Knipscheer P; Klug H; Sixma TK; Pichler A
    Methods Mol Biol; 2009; 497():201-10. PubMed ID: 19107419
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fourier transform ion cyclotron resonance mass spectrometry for the analysis of small ubiquitin-like modifier (SUMO) modification: identification of lysines in RanBP2 and SUMO targeted for modification during the E3 autoSUMOylation reaction.
    Cooper HJ; Tatham MH; Jaffray E; Heath JK; Lam TT; Marshall AG; Hay RT
    Anal Chem; 2005 Oct; 77(19):6310-9. PubMed ID: 16194093
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ubiquitin-dependent proteolytic control of SUMO conjugates.
    Uzunova K; Göttsche K; Miteva M; Weisshaar SR; Glanemann C; Schnellhardt M; Niessen M; Scheel H; Hofmann K; Johnson ES; Praefcke GJ; Dohmen RJ
    J Biol Chem; 2007 Nov; 282(47):34167-75. PubMed ID: 17728242
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dissecting SUMO Dynamics by Mass Spectrometry.
    Drabikowski K; Dadlez M
    Methods Mol Biol; 2016; 1449():291-8. PubMed ID: 27613044
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vivo detection and characterization of sumoylation targets in Saccharomyces cerevisiae.
    Ulrich HD; Davies AA
    Methods Mol Biol; 2009; 497():81-103. PubMed ID: 19107412
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Site-specific proteomic strategies to identify ubiquitin and SUMO modifications: Challenges and opportunities.
    Trulsson F; Vertegaal ACO
    Semin Cell Dev Biol; 2022 Dec; 132():97-108. PubMed ID: 34802913
    [TBL] [Abstract][Full Text] [Related]  

  • 18. SUMO modification of the ubiquitin-conjugating enzyme E2-25K.
    Pichler A; Knipscheer P; Oberhofer E; van Dijk WJ; Körner R; Olsen JV; Jentsch S; Melchior F; Sixma TK
    Nat Struct Mol Biol; 2005 Mar; 12(3):264-9. PubMed ID: 15723079
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dissecting the ubiquitin pathway by mass spectrometry.
    Xu P; Peng J
    Biochim Biophys Acta; 2006 Dec; 1764(12):1940-7. PubMed ID: 17055348
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Small ubiquitin-like modifier 3-modified proteome regulated by brain ischemia in novel small ubiquitin-like modifier transgenic mice: putative protective proteins/pathways.
    Yang W; Sheng H; Thompson JW; Zhao S; Wang L; Miao P; Liu X; Moseley MA; Paschen W
    Stroke; 2014 Apr; 45(4):1115-22. PubMed ID: 24569813
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.