BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

257 related articles for article (PubMed ID: 19107409)

  • 21. The SUMO pathway: emerging mechanisms that shape specificity, conjugation and recognition.
    Gareau JR; Lima CD
    Nat Rev Mol Cell Biol; 2010 Dec; 11(12):861-71. PubMed ID: 21102611
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Structure of a SUMO-binding-motif mimic bound to Smt3p-Ubc9p: conservation of a non-covalent ubiquitin-like protein-E2 complex as a platform for selective interactions within a SUMO pathway.
    Duda DM; van Waardenburg RC; Borg LA; McGarity S; Nourse A; Waddell MB; Bjornsti MA; Schulman BA
    J Mol Biol; 2007 Jun; 369(3):619-30. PubMed ID: 17475278
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Different proteomic strategies to identify genuine Small Ubiquitin-like MOdifier targets and their modification sites in Trypanosoma brucei procyclic forms.
    Iribarren PA; Berazategui MA; Bayona JC; Almeida IC; Cazzulo JJ; Alvarez VE
    Cell Microbiol; 2015 Oct; 17(10):1413-22. PubMed ID: 26096196
    [TBL] [Abstract][Full Text] [Related]  

  • 24. In vivo identification of sumoylation sites by a signature tag and cysteine-targeted affinity purification.
    Blomster HA; Imanishi SY; Siimes J; Kastu J; Morrice NA; Eriksson JE; Sistonen L
    J Biol Chem; 2010 Jun; 285(25):19324-9. PubMed ID: 20388717
    [TBL] [Abstract][Full Text] [Related]  

  • 25. SUMO: getting it on.
    Anckar J; Sistonen L
    Biochem Soc Trans; 2007 Dec; 35(Pt 6):1409-13. PubMed ID: 18031233
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Positively charged amino acids flanking a sumoylation consensus tetramer on the 110kDa tri-snRNP component SART1 enhance sumoylation efficiency.
    Schimmel J; Balog CI; Deelder AM; Drijfhout JW; Hensbergen PJ; Vertegaal AC
    J Proteomics; 2010 Jun; 73(8):1523-34. PubMed ID: 20346425
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Screening method for isopeptides from small ubiquitin-related modifier-conjugated proteins by ion mobility mass spectrometry.
    Dumont Q; Donaldson DL; Griffith WP
    Anal Chem; 2011 Dec; 83(24):9638-42. PubMed ID: 22044126
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A Chemical and Enzymatic Approach to Study Site-Specific Sumoylation.
    Albuquerque CP; Yeung E; Ma S; Fu T; Corbett KD; Zhou H
    PLoS One; 2015; 10(12):e0143810. PubMed ID: 26633173
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Distinct and overlapping sets of SUMO-1 and SUMO-2 target proteins revealed by quantitative proteomics.
    Vertegaal AC; Andersen JS; Ogg SC; Hay RT; Mann M; Lamond AI
    Mol Cell Proteomics; 2006 Dec; 5(12):2298-310. PubMed ID: 17000644
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Identification of SUMO targets by a novel proteomic approach in plants(F).
    López-Torrejón G; Guerra D; Catalá R; Salinas J; del Pozo JC
    J Integr Plant Biol; 2013 Jan; 55(1):96-107. PubMed ID: 23164430
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Identification of SUMO targets through in vitro expression cloning.
    Gocke CB; Yu H
    Methods Mol Biol; 2009; 497():51-61. PubMed ID: 19107410
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Control of spontaneous and damage-induced mutagenesis by SUMO and ubiquitin conjugation.
    Stelter P; Ulrich HD
    Nature; 2003 Sep; 425(6954):188-91. PubMed ID: 12968183
    [TBL] [Abstract][Full Text] [Related]  

  • 33. "ChopNSpice," a mass spectrometric approach that allows identification of endogenous small ubiquitin-like modifier-conjugated peptides.
    Hsiao HH; Meulmeester E; Frank BT; Melchior F; Urlaub H
    Mol Cell Proteomics; 2009 Dec; 8(12):2664-75. PubMed ID: 19721078
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A global S. cerevisiae small ubiquitin-related modifier (SUMO) system interactome.
    Srikumar T; Lewicki MC; Raught B
    Mol Syst Biol; 2013 May; 9():668. PubMed ID: 23712011
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Enhanced detection of in vivo SUMO conjugation by Ubc9 fusion-dependent sumoylation (UFDS).
    Niedenthal R
    Methods Mol Biol; 2009; 497():63-79. PubMed ID: 19107411
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A proteomic strategy for gaining insights into protein sumoylation in yeast.
    Denison C; Rudner AD; Gerber SA; Bakalarski CE; Moazed D; Gygi SP
    Mol Cell Proteomics; 2005 Mar; 4(3):246-54. PubMed ID: 15542864
    [TBL] [Abstract][Full Text] [Related]  

  • 37. SUMO chains: polymeric signals.
    Vertegaal AC
    Biochem Soc Trans; 2010 Feb; 38(Pt 1):46-9. PubMed ID: 20074033
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Defining the SUMO-modified proteome by multiple approaches in Saccharomyces cerevisiae.
    Hannich JT; Lewis A; Kroetz MB; Li SJ; Heide H; Emili A; Hochstrasser M
    J Biol Chem; 2005 Feb; 280(6):4102-10. PubMed ID: 15590687
    [TBL] [Abstract][Full Text] [Related]  

  • 39. In vivo identification of human small ubiquitin-like modifier polymerization sites by high accuracy mass spectrometry and an in vitro to in vivo strategy.
    Matic I; van Hagen M; Schimmel J; Macek B; Ogg SC; Tatham MH; Hay RT; Lamond AI; Mann M; Vertegaal ACO
    Mol Cell Proteomics; 2008 Jan; 7(1):132-44. PubMed ID: 17938407
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mapping the SUMOylated landscape.
    Eifler K; Vertegaal AC
    FEBS J; 2015 Oct; 282(19):3669-80. PubMed ID: 26185901
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.