BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 19107576)

  • 1. Comparative proteomic analysis of apomictic monosomic addition line of Beta corolliflora and Beta vulgaris L. in sugar beet.
    Zhu H; Bi YD; Yu LJ; Guo DD; Wang BC
    Mol Biol Rep; 2009 Nov; 36(8):2093-8. PubMed ID: 19107576
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Proteomic analysis of sugar beet apomictic monosomic addition line M14.
    Li H; Cao H; Wang Y; Pang Q; Ma C; Chen S
    J Proteomics; 2009 Dec; 73(2):297-308. PubMed ID: 19782777
    [TBL] [Abstract][Full Text] [Related]  

  • 3. GISH and BAC-FISH study of apomictic Beta M14.
    Ge Y; He G; Wang Z; Guo D; Qin R; Li R
    Sci China C Life Sci; 2007 Apr; 50(2):242-50. PubMed ID: 17447032
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Proteomic analysis of salt tolerance in sugar beet monosomic addition line M14.
    Yang L; Zhang Y; Zhu N; Koh J; Ma C; Pan Y; Yu B; Chen S; Li H
    J Proteome Res; 2013 Nov; 12(11):4931-50. PubMed ID: 23799291
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Salt stress response of membrane proteome of sugar beet monosomic addition line M14.
    Li H; Pan Y; Zhang Y; Wu C; Ma C; Yu B; Zhu N; Koh J; Chen S
    J Proteomics; 2015 Sep; 127(Pt A):18-33. PubMed ID: 25845583
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of a sugar beet BvM14-MADS box gene through differential gene expression analysis of monosomic addition line M14.
    Ma C; Wang Y; Wang Y; Wang L; Chen S; Li H
    J Plant Physiol; 2011 Nov; 168(16):1980-6. PubMed ID: 21807438
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Construction of a binary BAC library for an apomictic monosomic addition line of Beta corolliflora in sugar beet and identification of the clones derived from the alien chromosome.
    Fang X; Gu S; Xu Z; Chen F; Guo D; Zhang HB; Wu N
    Theor Appl Genet; 2004 May; 108(7):1420-5. PubMed ID: 14749846
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantitative proteomics and phosphoproteomics of sugar beet monosomic addition line M14 in response to salt stress.
    Yu B; Li J; Koh J; Dufresne C; Yang N; Qi S; Zhang Y; Ma C; Duong BV; Chen S; Li H
    J Proteomics; 2016 Jun; 143():286-297. PubMed ID: 27233743
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Salt stress induced proteome and transcriptome changes in sugar beet monosomic addition line M14.
    Yang L; Ma C; Wang L; Chen S; Li H
    J Plant Physiol; 2012 Jun; 169(9):839-50. PubMed ID: 22498239
    [TBL] [Abstract][Full Text] [Related]  

  • 10. De novo transcriptome assembly and identification of salt-responsive genes in sugar beet M14.
    Lv X; Jin Y; Wang Y
    Comput Biol Chem; 2018 Aug; 75():1-10. PubMed ID: 29705503
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular characterization and chromosomal distribution of species-specific repetitive DNA sequences from Beta corolliflora, a wild relative of sugar beet.
    Gao D; Schmidt T; Jung C
    Genome; 2000 Dec; 43(6):1073-80. PubMed ID: 11195340
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 2-DE-based proteomic analysis of common bean (Phaseolus vulgaris L.) seeds.
    De La Fuente M; Borrajo A; Bermúdez J; Lores M; Alonso J; López M; Santalla M; De Ron AM; Zapata C; Alvarez G
    J Proteomics; 2011 Feb; 74(2):262-7. PubMed ID: 20971221
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Proteomic analysis of Holm oak (Quercus ilex subsp. ballota [Desf.] Samp.) pollen.
    Valero Galván J; Valledor L; González Fernandez R; Navarro Cerrillo RM; Jorrín-Novo JV
    J Proteomics; 2012 May; 75(9):2736-44. PubMed ID: 22484522
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Separation and identification of Musa acuminate Colla (banana) leaf proteins by two-dimensional gel electrophoresis and mass spectrometry.
    Lu Y; Qi YX; Zhang H; Zhang HQ; Pu JJ; Xie YX
    Genet Mol Res; 2013 Dec; 12(4):6871-81. PubMed ID: 24391035
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Proteomic changes induced by potassium deficiency and potassium substitution by sodium in sugar beet.
    Pi Z; Stevanato P; Sun F; Yang Y; Sun X; Zhao H; Geng G; Yu L
    J Plant Res; 2016 May; 129(3):527-38. PubMed ID: 26860314
    [TBL] [Abstract][Full Text] [Related]  

  • 16. OMICS Technologies and Applications in Sugar Beet.
    Zhang Y; Nan J; Yu B
    Front Plant Sci; 2016; 7():900. PubMed ID: 27446130
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparative proteome analyses of rhizomania resistant transgenic sugar beets based on RNA silencing mechanism.
    Hejri S; Salimi A; Malboobi MA; Fatehi F
    GM Crops Food; 2021 Jan; 12(1):419-433. PubMed ID: 34494497
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Proteome analysis of hairy root from Panax ginseng C.A. Meyer using peptide fingerprinting, internal sequencing and expressed sequence tag data.
    Kim SI; Kim JY; Kim EA; Kwon KH; Kim KW; Cho K; Lee JH; Nam MH; Yang DC; Yoo JS; Park YM
    Proteomics; 2003 Dec; 3(12):2379-92. PubMed ID: 14673788
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Proteome-wide characterization of sugarbeet seed vigor and its tissue specific expression.
    Catusse J; Strub JM; Job C; Van Dorsselaer A; Job D
    Proc Natl Acad Sci U S A; 2008 Jul; 105(29):10262-7. PubMed ID: 18635686
    [TBL] [Abstract][Full Text] [Related]  

  • 20. iTRAQ-Based Comparative Proteomic Analysis Provides Insights into Molecular Mechanisms of Salt Tolerance in Sugar Beet (
    Wu GQ; Wang JL; Feng RJ; Li SJ; Wang CM
    Int J Mol Sci; 2018 Dec; 19(12):. PubMed ID: 30518064
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.